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Lecture 1

Today: (1) Syllabus, (2) Cellular Systems Intro

1 Cellular Systems Intro

1.1 Generation Zero

The study of the history of cellular systems can help us understand the need for the system design
concepts we have today.

One of the major developments in WWII was the miniaturization of FM radio components to
a backpack or handheld device (the walkie-talkie), a half-duplex (either transmit or receive, not
both) push-to-talk communication device. After returning from war, veterans had the expectation
that wireless communications should be available in their civilian jobs [26]. But the phone system,
the Public Switched Telephone Network (PSTN) was: wired, and manually switched at telephone
exchanges. In 1952, the Mobile Telephone System (MTS) was designed to serve 25 cities in the US
[11] (including one in Salt Lake City [10]). In each city, an additional telephone exchange office was
created for purpose of connection with the mobile telephones [26]. The MTS and later the improved
mobile telephone system (IMTS), introduced in 1964, were not particularly spectrally efficient.

• They were allocated a total bandwidth of about 2 MHz. Frequency modulation (FM) was
used. For multiple user access, the system operated frequency division multiple access
(FDMA), in which each channel was allocated a non-overlapping frequency band within the
2 MHz.

• The PTSN is full duplex (transmit and receive simultaneously) in IMTS, so it required two
channels for each call, one uplink (to the base station) and one downlink (to the mobile
receiver). Note MTS had been half duplex, i.e., only one party could talk at once.

• The FCC required them to operate over an entire city (25 mile radius). Since the coverage
was city wide, and coverage did not exist outside of the cities, there was no need for handoff.

• Initially channels were 120 kHz [7], due to poor out-of-band filtering. The channel bandwidth
was cut to 60 kHz in 1950 and again to 30 kHz in 1965. Thus there were 2 MHz / 2 / 120
kHz or 8 full duplex channels at the start, and up to 32 in 1965, for the entire city.

Control was manual, and the control channel was open for anyone to hear. In fact, users were
required to be listening to the control channel. When the switching operator wanted to connect to
any mobile user, they would announce the call on the control channel. If the user responded, they
would tell the user which voice channel to turn to. Any other curious user could listen as well. A
mobile user could also use the control channel to request a call to be connected. The system was
congested, so there was always activity.

The demand was very high, even at the high cost of about $400 per month (in 2009 dollars).
There were a few hundred subscribers in a city [11] but up to 20,000 on the waiting list [26]. The
only way to increase the capacity was to allocate more bandwidth, but satisfying the need would
have required more bandwidth than was available.
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The downsides to MTS took a significant amount of technological development to address, and
the business case was not clear (AT&T developed the technologies over 35 years, but then largely
ignored it during the 1980s when it was deployed [11]).

1.2 Cellular

The cellular concept is to partition a geographical area into “cells”, each covering a small fraction
of a city. Each cell is allocated a “channel group”, i.e., a subset of the total list of channels. A
second cell, distant from a first cell using a particular channel group, can reuse the same channel
group. This is called “frequency reuse”. This is depicted in Figure 3.1 in Rappaport. This assumes
that at a long distance, the signals transmitted in the first cell are too low by the time they reach
the second cell to significantly interfere with the use of those channels in the second cell.

There are dramatic technical implications of the cellular concept. First, rather than one base
station, you need dozens or hundreds, deployed across a city. You need automatic and robust
mobility management (handoff) to allow users to cross cell lines and continue a phone call. Both of
these are actually enabled by semiconductor technology advancement, which made the base stations
and the automated wired PSTN cheaper [26].

Frequency reuse and handoff are topics for upcoming lectures.

1.3 Key Terms

Communication between two parties (a “link”), in general, can be one of the following:

• Simplex : Data/Voice is transferred in only one direction (e.g., paging). Not even an acknowl-
edgement of receipt is returned.

• Half Duplex : Data/Voice is transferred in one direction at a time. One can’t talk and listen
at the same time. One channel is required.

• Full Duplex : Data/Voice can be transferred in both directions between two parties at the
same time. This requires two channels.

In a cellular system, there is full duplex communication, between a base station and a mobile.
The two directions are called either uplink (from mobile to base station) or downlink (from BS
to mobile). The downlink channel is synonymous with “forward channel”; the uplink channel is
synonymous with the “reverse channel”.

Simultaneous communication on the many channels needed for many users (radios) to commu-
nicate with a base station can be accomplished by one (or a combination) of the following multiple
access methods.

• Frequency division multiple access (FDMA): Each channel occupies a different band of the
frequency spectrum. Each signal can be upconverted to a frequency band by multiplying it
by a sinusoid at the center frequency of that band, and then filtering out any out-of-band
content (see ECE 3500).

• Time division multiple access (TDMA): Every period of time can be divided into short seg-
ments, and each channel can be carried only during its segment. This requires each device to
be synchronized to have the same time clock.
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• Code division multiple access (CDMA): Many channels occupies the same frequency band, at
the same time. However, each channel occupies a different “code channel”. Like sinusoids at
different frequencies are orthogonal (non-interfering), sets of code signals can also be made
so that all code signals are orthogonal to each other. One user’s channel is multiplied by one
code in the set, and at the receiver, can be separated from the other signals by filtering (like
frequency bands can be filtered to remove out-of-band content).

See Figures 9.2 and 9.3, pages 450-453, in the Rappaport book.
Physical “parts” of a cellular system:

1. Public switched telephone network (PSTN): Wired telephone network, connecting homes,
businesses, switching centers.

2. Mobile switching center (MSC), a.k.a. mobile telephone switching office (MTSO): Controls
connection of wireless phone calls through the base stations to the PSTN. Connected either
by wire or by wireless (microwave relay) to the base stations.

3. Base station (BS): Maintains direct wireless connection to cell phones in its cell. Typically
maintains many connections simultaneously. Has multiple antennas, some for downlink and
some for uplink.

See Figure 1.5, page 14, in the Rappaport book.
In cellular systems, there are actually two types of channels: (1) Control, and (2) Communica-

tion. The control channel is needed to tell the mobile device what to do, or for the mobile to tell
the BS or MSC what to do. The communication channel is the “voice channel” or data channel,
the actual information that the user / system needs to convey in order to operate. Since we also
have a forward and reverse channel (for full duplex comms), we have

1. FCC: Forward control channel

2. FVC: Forward voice channel(s)

3. RCC: Reverse control channel

4. RVC: Reverse voice channel(s)

Quite a bit of work goes into planning for frequency reuse. We have two goals. First, a radio
should be in range of at least one BS; so BSes must have a certain density so to cover all of an area.
Next, a radio must avoid co-channel interference from other BSes using the same channel, which
means that base stations using the same channel should be widely separated. These are conflicting
goals! The first section of this course will teach you how to engineer a cellular system that works
to a desired specification.

Lecture 2

Today: (1) Frequency Reuse, (2) Handoff
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2 Frequency Reuse

2.1 Transmit Power Limits

A cell is the area in which a mobile is served by a single BS. What is the power transmitted by the
radios in a cell system? Limits differ by country.

1. Base station maximum = 100 W maximum Effective Radiated Power (ERP), or up to 500 W
in rural areas [27]

2. Cell phone maximum: typically 0.5 W; but limited by power absorbed by human tissue in
test measurements (of specific absorption rate).

Cell phone exposure limits are typically set to meet strictest of US / European / other standards.

2.2 Cellular Geometry

When the signal from the base station becomes too weak, the mobile will not be able to be served
by the BS. This defines the outer limit of a cell’s coverage area. What shape is a cell? See Figure
1. These are in order from most to least accurate:

1. A shape dependent on the environment.

2. Circular (theoretical): If path loss was a strictly decreasing function of distance, say, 1/dn,
where d is the distance from BS to mobile and n is the “path loss exponent”, then the cell
will be a perfect circle. This is never really true, but is often used to get a general idea.

3. An approximation to the theoretical shape: required for a tessellation (non-overlapping repet-
itive placement of a shape that achieves full coverage. Think floor tiles.) Possible “tile” shapes
include triangles, squares, hexagons. Hexagons are closest to reality.

(a) (b)

Figure 1: Theoretical coverage area, and measured coverage area. In (b), from measurements, with
red, blue, green, and yellow indicating signal strength, in decreasing order. From Newport et. al.
[19].

As we mentioned in lecture 1, a cellular system assigns subsets, “channel groups”, of the total
set of channels to each cell. Call the total number of channels S, and the number of channel groups
N . Then there are on average k = S/N channels per cell, and N cells per cluster. (In reality, k
may vary between groups.) Then with N channel groups, how do we assign them? We want cells
that reuse group A, for example, to be as far apart as possible.

The total number of channels in a deployment are S times the number of clusters in our
deployment area. If we’re limited by spectrum (number of channels) and want to increase the
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capacity over a fixed area, we want to maximize the number of clusters, or minimize the area
covered by any particular cluster. This is why we might use smaller and smaller cell diameters
as we want to increase our system capacity. What is the radius R of a cell? (From C. Furse)
Macrocell : R > 2000 feet, up to 25 miles; Microcell : 200 < R < 1000 feet; Picocell : R ≈ 100 feet.

2.2.1 Channel Assignment within Group

See Section 3.3. Which channels should be assigned to a cell? First, it is best to separate channels
in the group in frequency as much as possible to reduce adjacent channel interference (studied
later). But which channels are assigned? Two ways:

1. Fixed assignment : Each base station has a fixed set of channels to use. Simple, but a busy
cell will run out of channels before a neighboring cell. System performance will be limited by
the most crowded cell.

2. Dynamic allocation: Each base station can change the channels it uses. Channels in neigh-
boring cells must still be different. This requires more careful control, but increases the
capacity.

For example, a typical city needs more channels in its business districts during the day, and in its
residential areas at night and on weekends.

For general shapes, this can be seen as a graph coloring problem, and is typically covered in a
graph theory course. For hexagons, we have simple channel group assignment. Consider N = 3, 4,
7, or 12 as seen in Figure 2. A tessellation of these channel groupings would be a “cut and paste”
tiling of the figure. The tiling of the N = 4 example is shown in Figure 3.

Figure 2: Hexagonal tessellation and channel groupings for N = 3, 4, 7, and 12.

Example: Call capacity of N = 4 system
Assume that 50 MHz is available for forward channels, and you will deploy GSM. Each channel is
200 kHz, but using TDMA, 8 simultaneous calls can be made on each channel. How large is k?
How many forward calls can be made simultaneously for the cellular system depicted in Figure 3?
Solution: There are 50 MHz / 0.2 MHz or 250 total channels. With N = 4, then k = 250/4 = 62.5,
and with (about) 62.5 channels, 8(62.5) = 500 calls can be made simultaneously in each cell. There
are 28 cells on the cell map in Figure 3, so the total forward calls is 28(500) = 14 × 103 calls can
be made simultaneously.

Why wouldn’t you choose N as low as possible? There are interference limits, which will be
discussed in more detail in Section 2.4.
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Figure 3: Frequency reuse for N = 4.

How do you generally “move” from one cell to the co-channel cell (a second cell assigned the same
channel group)? All cellular tiling patterns can be represented using two non-negative integers, i
and j. The integer i is the number of cells to move from one cell in one direction. Then, turn 60
degrees counter-clockwise and move j cells in the new direction. For Figure 3, this is i = 2, j = 0.
In this notation, the number of cells can be shown to be:

N = i2 + ij + j2

What is the distance between two co-channel cell BSes? If the distance between the BS and a
vertex in its cell is called R, its “radius”, then you can show (good test question?) this co-channel
reuse distance D is:

D = R
√
3N

The ratio of D/R =
√
3N is called Q, the co-channel reuse ratio.

2.3 Large-scale Path Loss

Figure 4: Figure 4.1 from Rappaport, measured received power along a linear path, along with its
windowed average.

We will discuss fading in detail in subsequent lectures. For now, consider that received power
varies quickly (see the measurement in Figure 4). Figure 4 also shows that a time-average of
the received power is less variable but is not purely decreasing as distance between TX and RX
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(path length) increases. However, broadly speaking, if we could average out many measurements
of received signal power over many links with path length d, we would see a received power Pr (in
mW) that decayed proportional to 1/dn, where n is called the path loss exponent. Proportionality
gives us Pr = c/dn for some constant c. If we choose c = P0d

n
0 , then

Pr = (P0d
n
0 )

1

dn
= P0

(
d0
d

)n

= P0

(
d

d0

)−n

for reference power P0 and reference distance d0. In this form, P0 is the average power at a reference
distance d0. Typically d0 is taken to be something small, like 1 meter or 10 meters. Converting to
power in dBm,

10 log10 Pr
︸ ︷︷ ︸

Pr(dBm)

= 10 log10 P0
︸ ︷︷ ︸

P0(dBm)

− 10n log10
d

d0
︸ ︷︷ ︸

dB Pathloss

Question: How much does your average received power change when you double your path length?
Sidenote: How can you read your phone’s received power in dBm? There are “field test modes”

that differ by phone. For Nokia (I’m told) and iPhones, dial the number *3001#12345#* which
puts you into field test mode. On my iPhone 3GS, this puts the dBm received power in the upper
left corner of the screen.

2.4 Co-Channel Interference

What is the ratio of signal power to interference power? This is the critical question regarding the
limits on how low we may set N . This ratio is abbreviated S/I. Signal power is the desired signal,
from the base station which is serving the mobile. The interference is the sum of the signals sent
by co-channel base stations, which is not intended to be heard by mobiles in this cell. The S/I
ratio is defined as:

S

I
=

S
∑i0

i=1 Ii

where Ii is the power received by the mobile from a co-channel BS, of which there are i0, and S
is the power received by the mobile from the serving BS. NOTE: All powers in the S/I equation
above are LINEAR power units (Watts or milliWatts), not dBm.

Figure 5: Desired, and interfering signal for a mobile (M) from a serving and co-channel base
station.

As a first order, before we get more complicated, we model the received power as inversely
proportional to distance to the n power, for some constant path loss exponent n:

S = cd−n



ECE 5325/6325 Fall 2011 13

for some real valued constant c.
We typically look at the worst case, when the S/I is the lowest. This happens when the mobile

is at the vertex of the hexagonal cell, i.e., at the radius R from the serving BS. So we know
S = cR−n. What are the distances to the neighboring cells from the mobile at the vertex? This
requires some trigonometry work. The easiest approximation is (1) that only the first “tier” of
co-channel BSes matter; (2) all mobile-to-co-channel-BS distances are approximately equal to D,
the distance between the two co-channel BSes. In this case,

S

I
=

S
∑i0

i=1 Ii
≈ cR−n

i0(cD−n)
=

(D/R)n

i0
=

(3N)n/2

i0
(1)

where i0 is the number of co-channel cells in the first tier. For all N , we have i0 = 6 (try it out!); this
will change when using sector antennas, so it is useful to leave i0 as a variable in the denominator.
It is useful to report the S/I in dB, because S/I requirements are typically given in dB.

Example: AMPS design
Assume that 18 dB of S/I is required for acceptable system operation. What minimum N is
required? Test for n = 3 and n = 4.

Solution: 18 dB is 1018/10 = 101.8 = 63.1. Using (1), we need (3N)n/2

6 ≥ 63.1, so

N ≥ 1

3
[6(63.1)]2/n

For n = 3, N = 17.4; for n = 4, N = 6.5. Clearly, a high path loss exponent is important for
frequency reuse.

2.4.1 Downtilt

The Rappaport does not cover antenna downtilt, but it is an important practical concept. Compare
the elevation angles from the BS to mobile (Q1 in Figure 5) and co-channel BS to the mobile (Q2
in Figure 5). Note Q2 is lower (closer to the horizon) than from the serving BS. The great thing is,
we can provide less gain at angle Q2 than at Q1, by pointing the antenna main lobe downwards.
This is called downtilt. For example, if the gain at Q1 is 5 dB more than the gain at Q2, then the
we have added 5 dB to the S/I ratio. Having a narrow beam in the vertical plane is also useful to
reduce the delay spread and thus inter-symbol interference (ISI) [4], which we will introduce in the
2nd part of this course. This narrow vertical beam is pointed downwards, typically in the range of
5-10 degrees. The effect is to decrease received power more quickly as distance increases; effectively
increasing n. This is shown in Figure 6. How do you calculate the elevation angle from a BS to a
mobile? This angle is the inverse tangent of the ratio between BS height ht and horizontal distance
from the mobile to BS, d. But, at very low ratios, we can approximate tan−1(x) ≈ x. So the angle
is ht/d.

Ever wonder why base station antennas are tall and narrow? The length of an antenna in any
dimension is inversely proportional to the beamwidth in that dimension. The vertical beamwidth
needs to be low (5-10 degrees), so the antenna height is tall. The horizontal pattern beamwidths
are typically wide (120 degrees or more) so the antenna does not need to be very wide. For more
information consult [12].

Discussion: What are some of the problems with coverage and frequency reuse vs. what the
Rappaport book has presented?
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Figure 6: A diagram of a BS antenna employing downtilt to effectively increase the path loss at
large distances. From [15].

2.5 Handoff

See Section 3.4. As a mobile travels beyond the coverage region of its serving BS, it must be
transferred to better BS. If the average received power drops too low prior to handoff, the call is
“dropped”. Rappaport denotes this minimum average received power, below which a call cannot
be received, as Pr,minimumuseable. We want to initiate a handoff much prior to this point, so we set
a higher threshold Pr,handoff at which the MSC initiates the handoff procedure.

Instantaneous power may go down or up very quickly due to multipath fading. The time-
averaged received power will be less variable, but will still vary due to changes in the path length
(and thus the large-scale path loss) and due to shadowing. Regardless, at high mobile speeds, this
handoff needs to happen quickly. In GSM, handoff is typically within 1-2 seconds. In AMPS, this
was 10 seconds (higher potential for dropped calls!)

Define handoff margin as ∆

∆ = Pr,handoff − Pr,minimumuseable.

How much margin is needed to handle a mobile at driving speeds?

Example: Handoff Margin
Let the speed of a mobile be v = 35 meters/sec. For n = 4, a cell radius of 500 meters (the distance
at which the power is at the threshold), and a 2 second handoff, what ∆ is needed?
Solution: Assume the mobile is driving directly away from the BS, so distance d changes by 70
meters in two seconds. Consider the received power at the two times:

Pr,minimumuseable = Π0 − 10n log10 d

Pr,handoff = Π0 − 10n log10(d− 70)

Taking the difference of the two equations (the 2nd minus the 1st),

∆ = 10n log10 d− 10n log10(d− 50) = 10n log10
d

d− 70

Plugging in that the call is dropped at d = 500 meters, we have ∆ = 40 log1 0
500
430 = 2.6 dB.

Note that in this simple example, the propagation equation used is for “large scale path loss”
only, which changes slowly. Typically, shadowing (caused by large geographical features and build-
ings blocking the signal) will play a more important role in quick changes in received power.
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Mobile handoff (in GSM) is mobile-assisted hand-off (MAHO), in which the mobile measures
the FCC from neighboring BSes, and reports them to the MSC.

Handoff assumes that there is a channel in the new BS to offer the entering mobile! But there
may not be, and the call may be dropped for this reason. Users complain about dropped calls.
So BSes may reserve “guard channels” purely for handoff purposes, which then are not offered to
mobiles making new calls.

CDMA (Verizon 2G, and most 3G standards) phones do not require the same type of handoff as
in GSM. In CDMA, a user does not need to switch “channel”. Multiple base stations simultaneously
receive a mobile’s signal, and the MSC can combine the signals in some way (to obtain the best
received signal). “Soft” handoff changes: which BSes are receiving the mobile’s signal, and which
BS (singular) is sending the replies.

Lecture 3

Today: (1) Interference (from Lecture 2); (2) Trunking

2.6 Review from Lecture 2

• RX power model: Pr = c/dn or Pr(dBm) = P0(dBm)− 10n log10 d/d0.

• As a coarse approximation, cells are hexagons.

• A group of N cells is a cluster. Each cluster shares the total # of channels S by assigning
each cell S/N of the channels.

• Co-channel base stations are approximately R
√
3N apart.

• The signal to interference power ratio (SIR) = S/
∑

i Ii where S is the received power from
the desired signal and Ii is the received power from the ith interferer. The SIR in linear units
is approximately SIR= (3N)n/2/i0 where i0 = 6 (for now).

We did an example for SIR (dB) = 18. Rearranging,

N =
1

3
(i0SIR)

2/n

Plugging in, for n = 2, 3, 4 we have N =126.2, 17.4, and 6.5, respectively.

2.7 Adjacent Channel Interference

Standard (non-ideal) radios do not perfectly filter out any out-of-band signals. Any signal that a
mobile sends in another channel (besides its assigned channel) is interference at the BS w.r.t. the
desired signal sent by another mobile in that channel. Each mobile’s receiver also must filter out
out-of-band signals from the BS, which does send signals on all channels. One standard way of
making this problem less difficult is to assign non-adjacent channels within each cell’s channel
group.

We did an example last lecture in which we assigned S = 70 channels into groups for N = 7.
There were k = 70/7 ≈ 10 channels per group. For group 1, use channels {1, 8, . . . , 57, 64}. For
group i, use channels {i, i + 7, . . . , i+ 56, i + 63}.
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There is still the near-far effect. If a TX near the BS is producing just a little bit of out-of-band
noise, it might swamp out the desired signal transmitted by a TX far away to the same BS.

One solution is power control, i.e., reducing the TX power of mobiles close to the BS, since
a high TX power is unnecessary. This reduces their out-of-band noise as well. Compared to a
mobile transmitting full power all the time, power control extends battery life when close to a BS,
and generally reduces even co-channel interference on the reverse channel. However, controlling
a mobile means communication from the BS to the mobile to inform it whether to increase or
decrease its power, which then requires data overhead. Tight power control is particularly required
in all CDMA systems, which has a big “near-far problem”.

3 Trunking

Trunking refers to sharing few channels among many users. Let U be the number of users, and C
be the number of channels. Each user requires a channel infrequently, so a dedicated channel for
each user is not required. But, the request for a channel happens at random times, and so for any
C < U , it is possible that there will be more requests than channels.

• Erlang : A “unit” of measure of usage or traffic intensity. One Erlang is the traffic intensity
carried by one channel that is occupied all of the time. 0.1 Erlang is the same channel occupied
only 10% of the time.

• Average holding time: Average call duration, denoted H.

• Call rate: Average number of calls per unit time, denoted λ. Typically taken to be at the
busiest time of day.

• Total offered traffic intensity : The total amount of traffic users request of the system, denoted
A.

• Grade of Service (GOS): The probability an offered call will be blocked (and thus not served,
or carried by the system).

Rappaport presents that an average user will request (offer) this much traffic, Au = λH. For
example, if a user makes on average, two calls per hour, and that call lasts an average of 3 minutes,
Au = 2

60 min3 min = 0.1 Erlang. (Check your units!)
Then, to compute the total offered traffic intensity, and the total offered traffic intensity per

channel (denoted Ac),
A = UAu, Ac = A/C

For the above example, assume that there are 1000 users and 200 channels. Then A = 1000(0.1) =
100, and Ac = 100/200 = 0.5.

Note that Ac is a measure of the efficiency of the utilization of the channels.
How should we design our system? Obviously, Ac should be less than one (A < C); or

we’ll never satisfy our call demand. But how should we set U , Au, C to satisfy our customers?
First choice: what do we do when a call is offered (requested) but all channels are full?

• Blocked calls cleared : Ignore it.

• Blocked calls delayed : Postpone it!
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3.1 Blocked calls cleared

1. Call requests are a Poisson process. That is, the times between calls are exponentially dis-
tributed, and memoryless.

2. Call durations are also exponentially distributed.

3. Rather than a finite number U of users each requesting Au traffic, we set the total offered
traffic as a constant A, and then let U → ∞ and Au → 0 in a way that preserves UAu = A.
This is the “infinite number of users” assumption that simplifies things considerably.

These assumptions, along with the blocked calls cleared setup of the system, leads to the Erlang
B formula:

GOS = P [blocking] =
AC/C!

∑C
k=0A

k/k!
(2)

Since C is very high, it’s typically easier to use Figure 3.6 on page 81. By setting the desired GOS,
we can derive what number of channels we need; or the maximum number of users we can support
(remember A = UAu); or the maximum Au we can support (and set the number of minutes on our
calling plans accordingly).

3.2 Blocked calls delayed

Instead of clearing a call; put it in a queue (a first-in, first-out line). Have it wait its turn for a
channel. (“Calls will be processed in the order received”). There are now two things to determine

1. The probability a call will be delayed (enter the queue), and

2. The probability that the delay will be longer than t seconds.

The first is no longer the same as in (2); it goes up, because blocked calls aren’t cleared, they “stick
around” and wait for the first open channel.

Here, we clarify the meaning of GOS for a blocked calls delayed system. Here it means the
probability that a call will be forced into the queue AND it will wait longer than t seconds before
being served (for some given t).

We need a couple additional assumptions:

1. The queue is infinitely long. In a computer system, this translates to infinite memory.

2. No one who is queued gives up / hangs up (rather than wait).

With these assumptions, we can derive the Erlang C formula, for the probability that a call will be
delayed:

P [delay > 0] =
AC

AC + C! (1−A/C)
∑C−1

k=0 Ak/k!
(3)

It is typically easiest to find a result from Figure 3.7, on page 82. Once it enters the queue, the
probability that the delay is greater than t (for t > 0) is given as

P [delay > t|delay > 0] = exp

(

−C −A

H
t

)

(4)
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The two combined are needed to find the marginal (overall) probability that a call will be delayed
AND experience a delay greater than t, the event that we are quantifying in GOS.

GOS = P [delay > t] = P [delay > t|delay > 0]P [delay > 0]

= P [delay > 0] exp

(

−C −A

H
t

)

(5)

Example: N = 7 cell cluster
A 7 cell cluster (with N = 7) has 30 MHz allocated to it for forward channels and each channel is
200 kHz. Assume blocked-called-delayed and a probability of delay of 1%, and each user makes one
10 minute call every 3 hours. (a) What is the number of users that can be supported? (b) What
is P [delay > 10] seconds? (c) What if it was a blocked-calls-cleared system with QOS of 1%?
Solution: 30 MHz / 200 kHz = 150 channels, divided among 7 cells, so about 20 channels per
cell (after 1 control channel per cell). (a) With 20 channels, and probability of delay of 1%,
looking at figure 3.7, we see A is about 12. With 11 = AuU and Au = 10/(3 × 60) = 1/18,
we have that U = 198 ≈ 200. But this is per cell. So there can be 7(200) = 1400 users in the
7 cells. (b) in each cell, C = 20, A = 11, H = 10 min or H = 600 sec. So P [delay > t] =
(0.01) exp[−(20 − 11)(10)/600] = 0.01 exp(−0.15) = 0.0086. (c) From Figure 3.6, A ≈ 13, so
U = 234, for a total of 1634 total users.

3.3 Discussion

What are the problems or benefits we see from the assumptions we’ve made? Are call requests
“memoryless”? Is the exponential interarrival time assumption accurate? When catastrophic events
occur, or major news breaks, what happens? How should a communications system be designed to
handle these cases?

Lecture 4

Today: (1) Sectoring (2) Cell Splitting

4 Increasing Capacity and Coverage

4.1 Sectoring

In sectoring, we divide each cell into three or six “sectors” which are then served by three or six
separate directional antennas, each with beamwidth of about 120 or 60 degrees.

We showed in Lecture 2 that the S/I ratio is given by (3N)n/2

i0
, where N is the reuse ratio, and

i0 is the number of first-tier co-channel base stations. When we used omnidirectional antennas at
each BS, we saw that i0 = 6 regardless of N . By using sector antennas at the BSes, we will show
that i0 reduces. By reducing the S/I ratio for a given N , we allow a system to be deployed for a
lower N , and therefore a higher capacity system.

However, each cell’s channel group must be divided into three sub-groups. These new groups
have 1/3 or 1/6 the number of channels, and thus the trunking efficiency will be lower.
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Example: Decrease in trunking efficiency for constant N
Let N = 7, each cell has C = 100 channels, and users who make calls with λ = 0.01 per minute with
average holding time 3 minutes. For blocked-calls-cleared and a GOS of 2%, what is the number
of users which can be supported in this cell? Next, using 120 degree sectoring, and otherwise
identical system parameters, what is the number of users which can be supported in this cell?
What percentage reduction in capacity does sectoring with constant N cause?
Solution: For C = 100 and GOS= 0.02, from Figure 3.6, I read A ≈ 99. Thus with Au = 0.01(3) =
0.03, we could support U = 99/0.03 = 3300. For the sectoring case, C = 33.3 in each sector, and
from Figure 3.6, A = 24. So we could support U = 24/0.03 ≈ 800 per sector, or 2400 total in the
cell. The number of users has reduced by 28%.

Example: Reducing N with sector antennas
For the same system, now assume that with 120 degree sectoring, that N can be reduced from 7
to 4. What number of users can be supported?
Solution: Now, the number of channels in each cell goes up to 100(7/4) = 175. So each sector has
C = 58 channels. With GOS = 2%, from Figure 3.6, A ≈ 48, so U ≈ 1600, for a total of 4800 users
per cell. This is a 45% increase upon the N = 7 non-sectored cell.

Why does i0 reduce? Consider again a mobile at the edge of a cell. We need to determine which
of the first tier BSes contribute significantly to the interference signal. Refer to Figures 3.10, 3.11,
for N = 7, P3.28(b) for N = 3, and to Figure 7 for N = 4.

Figure 7: 120 degree sectoring for cellular system with N = 4. Only two first tier BSes significantly
interfere with the middle BS.

Compared to when i0 = 6, how much does S/I improve with sectoring?

Recall that S/I = (3N)n/2

i0
. In dB terms,

S

I
(dB) = 5n log10(3N) − 10 log10 i0

So with i0 = 6, the latter term is 7.8 dB. If i0 = 1, 2, and 3, the same term is 0, 3.0, or 4.8 dB. So,
the improvement is 3, 4.8, or 7.8 dB. The particular value of i0 that can be obtained is a function
of N and whether 60 or 120 degree sectoring is used.

For a particular SIR and path loss exponent, how does i0 affect the necessary N? From lecture
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3,

N =
1

3
(i0SIR)

2/n

So N is proportional to i
2/n
0 .

4.1.1 Determining i0

What is i0 for 120 or 60 degree sector antennas? In short: it depends on N . You need to check on
the hex plot to see how many sectors’ base stations will “cover” the serving sector. My argument
(not proven) is that when i 6= j, we have i0 = 2 for 120o antennas and i0 = 1 for 60o antennas.
But for i = j, you need i0 = 3 for 120o antennas and i0 = 2 for 60o antennas. The case of i = j
happens at N = 3, and N = 12 (and 3i2 in general).

4.1.2 Example

Example: Assume we have S = 533 full-duplex channels. Assume blocked-calls cleared
with a GOS of 2%, and per user offered traffic of 0.015 Erlang. Further assume we’re
using modulation with minimum required SIR(dB) of 19.5 dB and we’ve measured for
our deployment area that n = 3.3. Find the total number of users possible per channel
assuming (a) omni-directional antennas and (b) 120o sector antennas.

Solution: Note linear SIR = 1019.5/10 = 89.1. (a) For omni antennas, i0 = 6 so

N ≥ 1

3
(6 · 89.1)2/3.3 = 15.0

Since the given SIR is a minimum, we need N ≥ 15.0. Since there is no 15-cell reuse, we need to
increase to N = 16, which is possible with i = 4 and j = 0. Thus there are 533/16 = 33 channels
per cell available. With a GOS of 2%, from the Erlang B chart, A ≈ 25. With Au = 0.015, this
means U = A/Au = 25/0.015 = 1667 users per cell. (b) For 120o antennas, we need to guess at N
since i0 is a function of N . For larger N , i0 = 2 when using 120o antennas. So let’s plug in i0 = 2
and see what N we get:

N ≥ 1

3
(2 · 89.1)2/3.3 = 7.7

So N = 9 would work. (Checking, sure enough, i0 = 2 for N = 9.) Thus there are 533/9 = 59.22
channels per cell or 533/(9 · 3) = 19.7 channels per sector available. With a GOS of 2%, from the
Erlang B chart, A ≈ 14 per sector. With Au = 0.015, this means U = A/Au = 14/0.015 = 933
users per sector, or 2800 per cell. This is a (2800− 1667)/1667 = 68% improvement over the omni
case.

4.2 Microcells

When we introduced “cells” we said the radius was a variable R. The idea of using microcells is
that for a densely populated area, we cut the size of the cell by half. In this microcell-covered
area, the concept of frequency reuse occurs described earlier, only with smaller R. The smaller R
also has the benefit that transmit powers would be cut by a factor of 2n (see Rappaport 3.7.1 for
details). The other main benefit is that by reducing the area of a cell by a factor of four (forced
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by cutting R by two) the capacity in the microcell area is increased by four. For example, consider
Figure 8, which shows an original macrocell grid, next to an “inserted” microcell area.

However, at the edges of the microcell area, there is a conflict. Cells that were separated
by distance R

√
3N for the initial R are no longer separated by that much. Conflicts in channel

assignments at the edges are solved by splitting the channel group into two sub-groups. These
subgroups can have different sizes, e.g., the sub-group used for the microcell might have fewer
channels assigned to it compared to the macrocell.

Another problem in GSM is that the number of handoffs is increased, since users travel through
microcells more quickly. This can be addressed using umbrella cells (page 66) or microcell zones
(Section 3.7.4).

(a) (b)

Figure 8: (a) 68 macrocells vs. (b) 53 macrocells plus 57 microcells.

4.3 Repeaters

This is Section 3.7.3 in Rappaport. Repeaters can be used to increase the coverage area, particularly
into buildings, tunnels, and canyons. They are bidirectional (they amplify forward and reverse
channels). However, repeaters don’t add any capacity to the system, they just increase the reach
of a BS or MS into “shadowed” areas.

4.4 Discussion

What are some of the problems with the assumptions made in this analysis?

Lecture 5

Today: (1) Free Space (2) Large Scale Path Loss (Intro)

Path loss models are either (1) empirical or (2) theoretical. We’ll start to discuss both. As
you’ll see, empirical models were developed as modifications to theoretical models.
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5 Free Space Propagation

Free space is nothing – nowhere in the world do we have nothing. So why discuss it?
Rappaport Section 4.3 describes the electric and magnetic fields produced by a small dipole

antenna. This equation is only valid for a small dipole, and is only useful very close to (the near
field of) the antenna. In the “far field” (distances many wavelengths from the antenna), the received
power Pr in free space at a path length d is given in Section 4.2 as

Pr = PtGtGr

(
λ

4πd

)2

(6)

where Gt and Gr are the transmitter and receiver antenna gains, respectively; Pt is the transmit
power; and λ is the wavelength. Notes:

• Wavelength λ = c/f , where c = 3×108 meters/sec is the speed of light, and f is the frequency.
We tend to use the center frequency for f , except for UWB signals, it won’t really matter.

• All terms in (6) are in linear units, not dB.

• The effective isotropic radiated power (EIRP) is PtGt.

• The path loss is Lp =
(
4πd
λ

)2
. This term is called the “free space path loss”.

• The received power equation (6) is called the Friis transmission equation, named after Harald
T. Friis [6].

• Free space is used for space communications systems, or radio astronomy. Not for cellular
telephony.

In dB, the expression from (6) becomes

Pr(dBm) = Pt(dBm) +Gt(dB) +Gr(dB)− Lp(dB), where Lp(dB) = 20 log10

(
4πd

λ

)

(7)

I like to leave Lp(dB) in terms of d/λ, which is a unitless ratio of how many wavelengths the signal
has traveled. The terms Gt(dB) and Gr(dB) are clearly gains, when they are positive, the received
power increases. And as distance increases, Lp(dB) increases, which because of the negative sign,
reduces the received power. We use “G” to denote gains and “L” to denote losses. But a negative
gain is a loss, and a negative loss is a gain.

5.1 Received Power Reference

Note either (6) or (7) can be converted to “refer to” a reference distance. For example, multiply
the top and bottom of (6) by (d0/d0)

2 for some reference distance d0:

Pr = PtGtGr

(
λ

4πd0

)2(d0
d

)2

= Pr(d0)

(
d0
d

)2

(8)
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where Pr(d0) is the received power at the reference distance d0, according to (6). Now, we see that
whatever the received power in free space is at distance d0, the power at d decays as (d0/d)

2 beyond
that distance. In dB terms,

Pr(dBm) = Π0(dBm)− 20 log10
d

d0
(9)

where Π0(dBm) = 10 log10 Pr(d0). This is actually an easier equation to deal with in practice,
because we don’t necessarily know the antenna gains and mismatches, and transmit power; but we
can measure Π0(dBm). Of course, not in free space – we don’t exist there!

5.2 Antennas

Antenna gain is a function of angle. The only exception is the (mythical) isotropic radiator.

Def’n: Isotropic Radiator
An antenna that radiates equally in all directions. In other words, the antenna gain G is 1 (linear
terms) or 0 dB in all directions.

(From Prof. Furse) An isotropic radiator must be infinitesimally small. Does not exist in
practice, but is a good starting point.

Antenna gains can be referred to other ideal antenna types:

• dBi: Gain compared to isotropic radiator. Same as the dB gain we mentioned above because
the isotropic radiator has a gain of 1 (or 0 dB).

• dBd: Gain compared to a half-wave dipole antenna. The 1/2 wave dipole has gain 1.64
(linear) or 2.15 dB, so dBi is 2.15 dB greater than dBd.

Technically, any antenna that is not isotropic is directive. Directivity is measured in the far
field from an antenna as:

D =
Pr(maximum)

Pr(isotropic)

where Pr(maximum) is the maximum received power (at the same distance but max across angle),
and Pr(isotropic) is the power that would have been received at that point if the antenna was an
isotropic radiator.

Antennas also have an efficiency. They lose some power without radiating it as EM waves. Thus
the maximum gain is the directivity times the efficiency.

Commonly, we call an antenna directional if it is has a non-uniform horizontal pattern. A dipole
has a “donut-shaped” pattern, which is a circle in its horizontal pattern (slice).

There are also antenna mismatches. We denote these as Γt and Γr. Both are ≤ 1, and only one
if there is a perfect impedance match and no loss.

5.3 Power Flux Density

There is a concept in propagation of power flux density, the amount of power that travels through
a given area. This is a far-field concept only. Power flux is denoted Pd in Rappaport, and has units
of Watts per square meter, W/m2. In free space,

Pd =
|E|2
η

W/m2
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where η is the intrinsic impedance of free space, 120πΩ = 377Ω, and |E|2 is the magnitude squared
of the electric field. The idea is that an antenna “captures” some of this power, according to,
effectively, how large the antenna is. We call this the effective antenna aperture, and denote it Ae,
with units m2. In short, physically larger antennas are capable of larger Ae, although there is no
exact proportionality. In this case the definition of the received power is

Pr(d) = PdAe

6 Large Scale Path Loss Models

Let’s transition to the real world, where we exist. There are other effects besides radiation, including
attenuation (transmission), reflection, diffraction, scattering, etc. We will discuss each of these in
upcoming lectures. For now, suffice it to say that many signals arrive at the receiver, but with less
power than would be indicated by the Friis equation. The received power varies strongly (5-25 dB)
even for small changes in antenna position, center frequency, and time. But, there is a large effect
caused when the distance (a.k.a. path length) increases by orders of magnitude. This large effect
we call large scale path loss. It is analogous to Lp, but doesn’t necessarily take the same form. We
will re-write Lp as a function of distance in one of two ways:

1. Exponential decay: Lp will include a term proportional to 10αd/10, where α is a loss factor,
with units dB per meter. In this case, Lp(dB) = αd, which makes it easier to see that α is
dB loss per meter. Equation (6) is typically re-written as:

Pr = PtGtGr

(
λ

4πd

)2

10−αd/10 (10)

This works well in some conditions, for example, at 60 GHz, at which oxygen molecules absorb
RF radiation, or due to rain at 30 GHz.

2. Power decay: Lp will be proportional to 1/dn, for some path loss exponent n. In free space, it
was proportional to 1/d2, so this just lets n adjust to the particular environment. Typically, n
ranges between 1.6 and 6, according to Rappaport. From my experience, I’ve seen n between
1.7 and 5.

6.1 Log Distance Path Loss

This is 4.9 and 4.11 in Rappaport. This is synonymous with what I call “power decay” above.
Actually, it is the simplest of the models, and makes a big step towards better representation of
actual large-scale path loss. In the log-distance path loss model, we can simply write the received
power as a modification of (9) as

Pr(dBm) = Π0(dBm)− 10n log10
d

d0
(11)

where Π0(dBm) is still given by the Friis equation, but now the Lp(dB) term has changed to include
a factor 10n instead of 20. Typically d0 is taken to be on the edge of near-field and far-field, say 1
meter for indoor propagation, and 10-100m for outdoor propagation.

We mentioned that we can find the parameter Π0(dBm) from measurements. We can also find
the parameter n from measurements. For example, two measurement campaigns I did in office
areas resulted in the estimates of n = 2.30 and 2.98 as shown in Figures 9 and 10.
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Figure 9: Wideband path gain measurements (x) at 2.4 GHz as a function of path length d. Linear
fit (—) is with d0 = 1m, n = 2.30, and σdB = 3.92. From [21].
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Figure 10: Narrowband measurements of path gain minus Π0(dBm) (o) at 925 MHz as a function
of path length d. Linear fit (—) is with d0 = 1m, n = 2.98, with standard deviation σdB = 7.38.
From [21].
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6.2 Multiple Breakpoint Model

This is Rappaport Section 4.11.4. Empirically measurement studies have shown that the slope of
the Lp vs. distance curve changes after a certain distance [9]. You can see this effect in Figure 10
for d > 20 meters; the path gains at d = 50 meters are all lower than the model, and one can see
the slope changing to an n higher than 2.98. We will discuss theoretical reasons why this might
happen in later lectures. Regardless, we can model the path loss as experiencing more than one
slope in different segments of the log d axis.

Pr(dBm) =

{

Π0(dBm)− 10n1 log10
d
d0
, d ≤ d1

Π1(dBm)− 10n2 log10
d
d1
, d > d1

(12)

where Π0(dBm) is still the Friis received power at a distance d0, and Π1(dBm) is the received power
(given by the first line of the equation) at distance d1, and d0 < d1. Typically, the slope of the path
loss increases, i.e., n2 > n1.

Lecture 6

Today: (1) Reflection (2) Two-ray model

7 Reflection and Transmission

There are electric and magnetic waves that serve to propagate radio energy. The electric waves
can be represented as a sum of two orthogonal polarization components, for example, vertical and
horizontal, or left-hand and right-hand circular. What happens when these two components of the
electric field hit the boundary between two different dielectric media?

We talk about the plane of incidence, that is, the plane containing the direction of travel of the
waves (incident, reflected, and transmitted), and perpendicular to the surface (plane where the two
media meet). See Figure 4.4 on page 115, reproduced in Fig 11.

Figure 11: Figure 4.4 from Rappaport. The ⊙ indicates an arrow pointing out of the paper.

Notes about the notation from Rappaport:

• “Parallel” refers to the E-field having direction parallel to the plane of incidence (as in Figure
4.4(a)); “perpendicular” means perpendicular (normal) to the plane of incidence (as in Figure
4.4(b)).
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• Use subscripts i, r, and t to refer to the incident, reflected, and transmitted field.

• ǫ1, ǫ2, is the permittivity of medium 1 and 2. (units Farads/meter) (Note: F = sec / Ω)

• µ1, µ2 is the permeability of medium 1 and 2. (units Henries/meter) (Note: H = Ω sec )

• σ1, σ2 is the conductance of medium 1 and 2 (units Siemens/meter). (Note: S = 1 / Ω)

• The complex dielectric constant is ǫ = ǫ0ǫr − jǫ′ where ǫ0 = 8.85 × 10−12 F/m is free space
permittivity, j =

√
−1, and ǫ′ = σ

2πf , and ǫr is the relative permittivity. Don’t get confused
by the subscripts in this equation.

• A material is a good conductor when σk > fǫk.

• The intrinsic impedance of medium k is µk

√

µk/ǫk.

Then the reflection coefficients at the boundary between two non-conductive (dielectric) mate-
rials are given by

Γ‖ ,
Er

Ei
=

η2 sin θt − η1 sin θi
η2 sin θt + η1 sin θi

Γ⊥ ,
Er

Ei
=

η2 sin θi − η1 sin θt
η2 sin θt + η1 sin θi

(13)

where θt is determined by Snell’s Law :

√
µ1ǫ1 sin(90

o − θi) =
√
µ2ǫ2 sin(90

o − θt) (14)

Also, the angle of incidence is equal to the angle of reflection:

θi = θr

Finally, the reflected and transmitted field strengths are:

Er = ΓEi

Et = (1 + Γ)Ei

where you chose Γ based on the polarization of the incident E-field, i.e., use either Γ‖ or Γ⊥.
There is a special case of (13) when the first medium is free space (or approximately, air) and

µ1 = µ2. These two conditions are the case for most dielectric materials, in short, for the materials
for we’d care to apply (13). In this case you can show (good test problem?) that

Γ‖ =
−ǫr sin θi +

√
ǫr − cos2 θi

ǫr sin θi +
√
ǫr − cos2 θi

Γ⊥ =
sin θi −

√
ǫr − cos2 θi

sin θi +
√
ǫr − cos2 θi

(15)

See Figure 4.6 on page 118 of Rappaport. At some angle θi, there is no reflection of the parallel
E-field from (15). This angle is called the “Brewster angle”, which is given by

sin θB =

√
ǫ1

ǫ1 + ǫ2
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When medium 1 is free space, and ǫ2 = ǫ0ǫr,

sin θB =
1√

1 + ǫr

This is the same as Equation 4.28 in Rappaport.
Note that as θi → 0, Γ‖ → 1 and Γ⊥ → −1.
Also, for perfect conductors (as described in Section 4.5.3), we also have Γ‖ = 1 and Γ⊥ = −1.

Example: Reflection from ground
Find the reflection coefficients for typical ground at an incident angle of 15 degrees at 100 MHz.
Solution: Assume free space is medium 1 and that ‘typical ground’ has ǫr = 15. Note sin 15o =
0.259, and cos2 15o = 0.933, so from (15),

Γ‖ =
−15(0.259) +

√
15− 0.933

15(0.259) +
√
15− 0.933

= −0.0176

Γ⊥ =
0.259 −

√
15− 0.933

0.259 +
√
15− 0.933

= −0.871

8 Two-Ray (Ground Reflection) Model

Section 4.6 in Rappaport develops a theoretical model for propagation slightly better than the free
space assumption. This model includes not just one path, but also another path that reflects off of
the ground, as shown in Figure 4.7 in Rappaport. The model isn’t hard to develop, and provides
an important theoretical underpinning to the multiple breakpoint model we covered in lecture 5.

Remember, powers of multipath DON’T add together. Only voltages or field strength of multi-
path actually add together. The voltage on the antenna is proportional to the electric field at the
antenna position. So let’s talk about adding electric fields.

Figure 12: Figure 4.7 from Rappaport. TX and RX have are separated on the ground by d, but
are at heights ht and hr respectively.
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8.1 Direct Path

Recall that the electric field magnitude decays as 1/d in free space. So, similar to how we wrote the
received power with a reference distance d0, we write the E-field strength as the E-field strength at
a reference distance, multiplied by d0/d

′, for a path (distance of travel for waves) length d′. Also,
assume the signal is a simple sinusoid at the carrier frequency, fc. So

E(d, t) = E0
d0
d′

cos

(

2πfc

(

t− d′

c

))

(16)

For the LOS path, given a distance along the ground of d, antenna heights ht and hr at the TX
and RX, respectively, the d′ =

√

d2 + (ht − hr)2. So

ELOS = E0
d0

√

d2 + (ht − hr)2
cos

(

2πfc

(

t−
√

d2 + (ht − hr)2

c

))

(17)

8.2 Reflected Path

Two things change for the reflected path compared to the LOS path:

1. The path is longer than the LOS path for total length
√

d2 + (ht + hr)2 (use the “method of
images” to show this).

2. The reflected field strength changes by a factor of Γ.

In general, we can write the E-field as

Eg = ΓE0
d0

√

d2 + (ht + hr)2
cos

(

2πfc

(

t−
√

d2 + (ht + hr)2

c

))

(18)

Let’s assume that d is very long compared to the antenna heights. So, the angle of incidence
is approximately 0. In this case the reflection coefficient (assume perpendicular polarization) is -1.
Then (18) becomes,

Eg = −E0
d0

√

d2 + (ht + hr)2
cos

(

2πfc

(

t−
√

d2 + (ht + hr)2

c

))

(19)

8.3 Total Two-Ray E-Field

We are interested in the magnitude of the total E-field, ETOT = ELOS + Eg, that is, the quantity
that multiplies the cos(2πfct) term. Using trig identities, and this approximation:

∆ =
√

d2 + (ht + hr)2 −
√

d2 + (ht − hr)2 ≈
2hthr
d

we can show that

|ETOT | ≈ 2E0
d0
d

sin

(
2πfc
c

2hthr
d

)

But at large L, the argument of the sin is approximately 0, and the sinx ≈ x. This is when x < 0.3
radians, which in our equation, means that for

d >
20hthrfc

c
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we can use this approximation :

|ETOT | ≈ 2E0
d0
d

(
2πfc
c

2hthr
d

)

=
const

d2

This means that the power decays as 1/d4! See Figure 13.
In summary, when there are two paths, one direct and one ground reflection, the theoretical

models show behavior that has two different path loss exponents, 1/d2 for d less than a threshold,
and 1/d4 for d above the threshold. This matches what we’ve observed from measurements and
presented as the empirical “multiple breakpoint” model.

Figure 13: Received power as a function of log distance in two-ray model, Figure 2.5 from the
Goldsmith book [11].

However, a note: this is just a theoretical model. Typical cellular or indoor channels do not
have just two paths. One of the 6325 assignments is to build a “ray-tracing” simulation for a
rectangular room. As the number of paths with significant amplitude increases, you tend not to
see the 1/d4 behavior. This model tends to be accurate in outdoor areas with few obstructions,
where the ground reflection is strong, and few other multipath components have significant power.

9 Indoor and Site-specific Large Scale Path Loss Models

9.1 Attenuation Factor Models

In previous lectures we explored models for large scale path loss as

Pr(dBm) = Π0(dBm)− 10n log10
d

d0
. (20)

From the reflection equations, we can see that transmitted field has a multiplier Γt, and thus the
transmitted signal power is multiplied by |Γt|2 for each change in material. In dB terms, these are
additive terms 20 log10 |Γt|. Thus in my large scale path loss equation, if I know what materials
(obstructions) are in between the transmitter and receiver, I might add in these gains (equivalently
subtract the losses) to my received power as follows:

Pr(dBm) = Π0(dBm)− 10n log10
d

d0
−
∑

i

PAFi (21)
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where PAFi is the loss (partition attenuation factor) caused by transmission through obstruction i.
For example, if the signal must go through one external wall and two internal walls, we’d find PAF
for these three obstructions, and add them in. In fact, in this case, if the two internal walls are
identical types of walls, I would find two different PAFs, and add the external wall PAF and twice
the internal wall PAF in (21). Table 4.3 in Rappaport has a summary of reported PAF values for
standard obstructions at some frequencies. If you know the signal goes from one floor to another,
you can consider the floor as just another obstruction with its own PAF. Incidentally, you can
estimate the PAFs if you measure many links and keep track of the path length, and how many of
each type of obstruction that each link crosses through, using some linear algebra [8].

An example of the importance of this work is in determining the received power in buildings or
in homes when the transmitter is located outside of the building. For example, in the late 1990s,
wireless companies (and the FCC) proposed “local multipoint distribution services” (LMDS) as
an alternative to cable TV, at either 6, 20, or 30 GHz. The service would put digital TV signal
transmitters on a telephone pole in a neighborhood, and people in homes would just connect a
special antenna to their TV and be able to download a wide bandwidth of video data. At 6 or 30
GHz, PAFs are higher, and thus the link budgets were strongly dependent on how many walls and
trees the signal would need to pass through between tower and TV [8]. Incidentally, LMDS lost
out in the competition with cable and DSL and satellite.

9.2 Ray-tracing models

An even more site-specific propagation model uses a GIS database of terrain and building locations
and shapes in order to “ray-trace” contributing paths. Like we traced the ground-reflected path
above, there will be other reflected paths (and diffracted and scattered paths) that can be computed
from the geometry of the obstructions in the environment. Of course, these databases are incomplete
and so they must be “corrected” using measurements of Pr at known positions.

One example of the importance of accurate RX power models is in the localization of cellular
phones. The FCC has a requirement to reliably locate cell phones when they dial 911. There are
specifics behind the word “reliably” and GPS won’t cut it, because GPS doesn’t accurately locate
a phone that is indoors. One complementary technology to GPS (sold by Polaris Wireless) is to use
the signal power recorded from neighboring base stations as a vector “signature” that is compared
with those in a database. They do drive tests to come up with the signal strength vectors to put in
the database. But they can’t go in to every building, so they use a site-specific model to estimate
what the signal strengths are inside of the building, based on the signals measured outside of the
building. These estimated vectors are also put into the database. Finally, when a 911 call comes
in, the phone records the RSS from neighboring BSes and the vector of them is compared to those
in the database, and the location is guessed from the closest matches.

Lecture 7

Today: (1) Link Budgeting

Exam 1 (Tue, Sept 20, 3:40-4:40pm) covers: lectures 1-6; homeworks 1-3; Rappaport Chapters 3
and 4 (only the sections listed on the schedule). See http://span.ece.utah.edu/5325-exam1prep,
for more practice. Note that I cannot test you on everything in one hour, the problems will be a
random sample. So be knowledgeable about all possible problems that can be solved. DO NOT
think that if you can handle the spring 2010 exam 1, that those are the only types of problems that
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will be covered, and thus you are ready.

10 Link Budgeting

Link budgets are, as the name implies, an accounting of the gains and losses that occur in a radio
channel between a transmitter and receiver. We’ve talked about S/I – you need an acceptable
signal to interference ratio. In addition, you need an acceptable signal to noise, or S/N, ratio.
(a.k.a. SNR, C/N , or Pr/PN ratio, where C stands for carrier power, the same thing we’ve been
calling Pr, and N or PN stands for noise power. Since we’ve already used N in our notation for the
cellular reuse factor, we denote noise power as PN instead.) Noise power is due to thermal noise.

In the second part of this course, we will provide more details on where the requirements for S/N
ratio come from. For now, we assume a requirement is given. For a given required S/N ratio, some
valid questions are: What is the required base station (or mobile) transmit power? What is the
maximum cell radius (i.e., path length)? What is the effect of changing the frequency of operation?
Also, there is a concept of path balance, that is, having connectivity in only one direction doesn’t
help in a cellular system. So using too much power in either BS or mobile to make the maximum
path length longer in one direction is wasteful.

As we’ve said, this is accounting. We need to keep track of each loss and each gain that is
experienced. Also, to find the noise power PN , we need to know the characteristics of the receiver.
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Figure 14: Relationship among link budget variables.

10.1 Link Budget Procedure

A universal link budget for received power is:

Pr(dBW) = Pt(dBW) +
∑

dB Gains−
∑

dB Losses (22)

A universal link budget for S/N is:

S/N = Pr(dBW)− PN (dBW) = Pt(dBW) +
∑

dB Gains−
∑

dB Losses− PN (dBW)
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1. There’s no particular reason I chose dBW instead of dBm for Pr and PN . But they must be
the same, otherwise you’ll have a 30 dB error!

2. If using EIRP transmit power, it includes Pt(dBW) + Gt(dB), so don’t double count Gt by
also including it in the dB Gains sum.

3. The dB noise figure F (dB) is either included in PN (dBW) or in the dB losses, not both!

4. Gains are typically only the antenna gains, compared to isotropic antennas.

5. There are also coding, a.k.a. processing, gains, achieved by using channel coding to reduce
the errors caused by the channels. DS-SS (e.g., CDMA) is a type of modulation which has
a processing gain. These might be subtracted from the required S/N ratio, or added to the
gains. Do one, but not both.

6. Losses include large scale path loss, or reflection losses (and diffraction, scattering, or shadow-
ing losses, if you know these specifically), losses due to imperfect matching in the transmitter
or receiver antenna, any known small scale fading loss or “margin” (what an engineer decides
needs to be included in case the fading is especially bad), etc.

7. Sometimes the receiver sensitivity is given (for example on a RFIC spec sheet). This is the
PN (dB) plus the required S/N(dB).

10.2 Thermal noise

The thermal noise power in the receiver is PN , and is given as PN = FkT0B, where

• k is Boltzmann’s constant, k = 1.38 × 10−23J/K. The units are J/K (Joules/Kelvin) or
W·s/K (1 Joule = 1 Watt × second).

• T0 is the ambient temperature, typically taken to be 290-300 K. If not given, use 294 K, which
is 70 degrees Fahrenheit.

• B is the bandwidth, in Hz (equivalently, 1/s).

• F is the (unitless) noise figure, which quantifies the gain to the noise produced in the receiver.
The noise figure F ≥ 1.

In dB terms,
PN (dBW) = F (dB) + k(dBWs/K) + T0(dBK) +B(dBHz)

where k(dBWs/K) = 10 log10 1.38 × 10−23J/K = −228.6 dBWs/K. We can also find F from what
is called the equivalent temperature Te. This is sometimes given instead of the noise figure directly.

F = 1 +
Te

T0
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10.3 Examples

Example: GSM uplink
Consider the uplink of a GSM system, given GSM requires an S/N of 11 dB [16]. Assume a
maximum mobile transmit power of 1.0 W (30 dBm), 0 dBd antenna gain at the mobile, and 12
dBd gain at the BS. Assume path loss given by the urban area Hata model, with fc = 850 MHz,
BS antenna height of 30 meters, mobile height of 1 meter. Assume F = 3 dB and that the system
is noise-limited. What is the maximum range of the link?
Solution:

• S/N required is 11 dB.

• PN = FkT0B = 2(1.38 × 10−23J/K)(294K)(200 × 103Hz) = 1.62 × 10−15 = −147.9(dBW).

• Pt = 0 dBW.

• Gains: include 0 dBd and 12 dBd (or 2.15 dBi and 14.15 dBi) for a total of 16.3 dB gains.

• Losses: Path loss is via urban area Hata, for d in km,

L(dB) = 69.55 + 26.16 log10(850) − 13.82 log10(30) + [44.9 − 6.55 log10(30)] log10 d

= 125.8 + 35.22 log10 d

So

11(dB) = 0(dBW) + 16.3(dB)− (125.8 + 35.22 log10 d) + 147.9(dBW)

d = 1027.4/35.22 = 6.0(km) (23)

Note 1 km = 0.62 miles, so this is 3.7 miles.

Example: Sensor Network

Assume two wireless sensors 1 foot above ground need to communicate over a range of 30
meters. They operate the 802.15.4 standard (DS-SS at 2.4 GHz). Assume the log-distance model
with reference distance 1m, with path loss at 1 m is Π0 = 40 dB, and path loss exponent 3 beyond
1m. Assume the antenna gains are both 3.0 dBi. The transmitter is the TI CC2520, which has max
Pt = 1 mW, and its spec sheet gives a receiver sensitivity of -98 dBm. What is the fading margin
at a 30 meter range? (Note: By the end of lecture 10 you will be able to specify fading margin
given a desired probability that communication will be lost due to a severe fade. Here we’re just
finding what the margin is for these system parameters.)
Solution: The question asks us to find the difference between Pr at 30 meters and the receiver
sensitivity (PN (dB) plus the required S/N(dB). Rearranging (22),

−98dBm = S/N + PN (dBm) = Pt(dBm) +
∑

dB Gains−
∑

dB Losses (24)

1. Pt(dBm) = 0 dBm.

2. Gains: Two antennas at 3 dBi (the units are effectively dB), so the total gains are 6 dB.
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3. Losses: There is the 40 dB loss to 1 m, then an additional 10(3.0) log10(30/1) = 44.3 dB.
Fading Margin is a Loss, so we have 84.3 dB + Fade Margin for the total losses.

So
−98dBm = 0(dBm) + 6(dB)− Fade Margin − 84.3(dB)

Which, solving for Fade Margin, is 19.7 dB.

Example: IS-136
Compare IS-136 and GSM in terms of range. Compared the the GSM uplink example above, an
IS-136 mobile has 0.6 W transmit power, and the required S/N is 15 dB [16], and IS-136 has a
lower bandwidth of 30 kHz.
Solution:

• S/N required is 15 dB.

• PN = FkT0B = 2(1.38× 10−23J/K)(294K)(30× 103Hz) = 2.43× 10−16W = −156.1(dBW).

• Pt = −2.2 dBW.

So

15(dB) = −2.2(dBW) + 16.3(dB)− (125.8 + 35.22 log10 d) + 156.1(dBW)

d = 1029.4/35.22 = 6.8(km) (25)

Lecture 8

Today: (1) Diffraction (2) Scattering

11 Diffraction

In EM wave propagation Huygens’ principle says that at each point, the wave field is effectively
re-radiating in all directions. In free space, these secondary reradiators sum and “produce” the
effect of a wave front advancing in the direction away from the source. When objects exist in free
space that block or attenuate some of the wave field, the reradiation enable EM waves to “bend”
around objects. In order to calculate the field at a point in (or near) the “shadow” of an object,
we can use Huygens’ principle to find accurate numerical results. This is a short version of some
advanced electromagnetics. See [24] Chapter 9 for a more detailed treatment.

See Figure 4.13 in Rappaport. The Fresnel-Kirchoff parameter ν is given by,

ν = h

√

2(d1 + d2)

λd1d2
(26)

depends on the geometry and the frequency, and is unitless:

• d1, d2, distance along line-of-sight path from TX or RX to obstruction
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• h, screening height

In short, we have a normalized vertical axis at the knife edge. The top of the knife edge is at
position ν – below ν, there is a perfect conductor, and above ν, there is free space. We assume the
knife edge is infinitely narrow. For our point of interest beyond the knife edge, Huygens’ principle
has us consider (sum) the effect of the secondary reradiators along the vertical axis, above the knife
edge. The summation is actually an integral, and is taken from ν to ∞, and is called the complex
Fresnel integral,

F (ν) =
1 + j

2

∫ ∞

ν
exp

[

−jπt2

2

]

dt (27)

One can calculate this integral with some knowledge of complex analysis, or even Matlab, but there
is no easy analytical function that comes out of the solution. We typically use a table or a plot.
The dB magnitude of the power loss from the Fresnel integral, 20 log10 F (ν), which we call the
knife-edge diffraction GAIN, is given by Figure 4.14 in Rappaport, and is copied in Figure 15.

Figure 15: Knife-edge diffraction gain in dB.

Expressions exist for the multiple knife edge diffraction problem – when multiple obstructions
block a propagating wave. However, these are largely computed via numerical analysis, so we won’t
elaborate on them.

12 Rough Surface Scattering

When we discussed reflection, we said a wave was impinging on a flat surface. But most surfaces
(e.g., walls, ground) are rough, not flat. When is a surface considered rough? When the maximum
height “protuberance” from the surface, h, is greater than hc,

hc =
λ

8 sin θi
(28)

where θi is, again, the angle of incidence.
Scattering has two effects important to us:

1. Rough surface scattering reduces the power in the reflected wave.
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2. Scattering causes additional multipath to be received in directions other than the specular
direction (recall θr = θi).

For 1., if the surface is rough, then the reflected wave has reflection coefficient multiplied by ρs,
so that Γrough = ρSΓ. Multiple expressions exist to compute ρS. Two given in the book are:

ρS = exp

[

−8

(
πσh sin θi

λ

)2
]

ρS = exp

[

−8

(
πσh sin θi

λ

)2
]

I0

[

8

(
πσh sin θi

λ

)2
]

where σh is the standard deviation of the height of the rough surface. The second expression is
considered to be more accurate.

For 2., scattering is a very useful and impactful phenomena. Scattering is the basis of radar,
weather systems, and passive RFID tags. Engineers have put much effort into understanding the
phenomena of EM wave scattering.

Similar to Huygens’ principal, the wave field at the scatterer is assumed to become a secondary
re-radiator. However, the object (the scatterer) is assumed to absorb the incident power, and then
re-radiate it (The re-radiation is not assumed to be occurring from the free space near the ob-
ject). The object is considered a new point source, where power is “received” and “retransmitted”.
Essentially we have two links, one from the transmitter to the scatterer, and one away from the
scatterer to the end receiver.

Typical airplane and weather radar is monostatic, i.e., the TX and RX are co-located. In some
bistatic wireless comm systems (and more robust airplane radar systems) the TX and RX are not
in the same place. The bistatic radar equation describes the received power Pr in a scattered wave
at a receiver that is not necessarily at the transmitter location. In linear and dB terms,

Pr =
PtGtGrσRCSλ

2

(4π)3d2t d
2
r

Pr(dBW) = Pt(dBW) +Gt(dB) +Gr(dB) + σRCS(dBmeter2)

+20 log10 λ− 30 log10 4π − 20 log10 dt − 20 log10 dr

Note that there are two 1/d2 terms, one corresponding to each “link” described above. The σRCS

term has units of meter2 and is the radar cross section of the scatterer. It is an area, like an
antenna effective aperture, that describes how much power is absorbed by the scatterer to be
reradiated. Also, note that in the dB expression, the dB meter2 units cancel because there are two
dB meter2 terms on top (σRCS and 20 log10 λ

2) and two dB meter2 terms on bottom (20 log10 dt
and 20 log10 dr).

Lecture 9

Today: (1) Multipath Fading

13 Multipath Fading

We’ve talked about physics, that is, how wave propagation and its interaction with the environment
causes reflection, transmission, diffraction, and scattering. Many individual propagating waves
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arrive at the receiver, these waves are called multipath components, or collectively, multipath. These
multipath cause fading effects (changes in the received power) grouped together and called multipath
fading. There are many kinds of multipath fading.

The challenges caused by multipath fading in wireless communication systems are one the most
significant challenges addressed by wireless engineers today. Engineers have developed a variety of
modulation and diversity schemes in order to counteract the negative influence of multipath fading.
And, we are developing methods which take advantage of multipath in particular ways as a benefit
for communication systems. All this to say, understanding of the fundamentals of fading is a critical
skill for wireless engineers.

We’re first going to talk about received power when mutiple multipath signals are reiceved at
the receiver. Then, we’ll present the spatial and temporal characteristics of multipath.

13.1 Multipath

We’ve been talking about the EM field. Specifically, we’ve presented expressions for the E-field Eb

when we send a sine at frequency fc through the channel, as

Eb = E0 cos(2πfct+ θ)

where E0 is positive real number. In other words,

Eb = R

[

E0e
j2πfct+jθ

]

= R

[

ej2πfctE0e
jθ
]

The above expressions are called bandpass representation. When we want to write a simpler
expression, we write the complex baseband-equivalent representation:

E = E0e
jθ

and we can “translate” any complex baseband-equivalent signal into its bandpass signal by applying

Eb = R

[

ej2πfctE
]

The simpler expression E has more easily viewable magnitude (amplitude) E0 and phase (angle) θ.
The voltage received by the antenna is proportional to E and has the same complex baseband

or real-valued baseband representation. For example, V = αEV0e
jθ, for some constant α.

As we discussed, many such multipath wave components arrive at the receiver. They add
together as voltages. DO NOT add the powers of the multipath together – there is no such physical
antenna that add together the powers of multipath. (If you find a way, patent it quick!)

Let’s say there are M multipath components, numbered 0 through M − 1. (Rappaport uses N
as the number of components, don’t confuse with the frequency reuse factor.) Component i has
amplitude Vi and phase θi. Then the total voltage at the receiver antenna will be:

VTOT =

M−1∑

i=0

Vie
jθi

The received power is then proportional to |VTOT |2 (by a resistance).
We did this for the two-ray model, remember? The magnitude |ETOT | was a sum of two cosine

terms, each with a different phase, which we needed to add together, before taking the magnitude
squared. It would be a good exercise to re-derive Section 4.6 using phase angles rather than cosines.



ECE 5325/6325 Fall 2011 39

13.2 Temporal

Let’s expand on where these phase angles come from. Recall that Vie
jθi is the representation of

Vi cos(2πfct+ θi). If Vi cos(2πfct) is transmitted from the transmitter antenna, how do the phases
of the multipath components behave with respect to each other? Well, each component has its
own path length. It really did travel that length. And EM waves all travel at the same speed –
c = 3 × 108 m/s. So some waves arrive later than others. Let τi denote the time delay of arrival
for multipath i relative to the transmit time. It is di/c, where di is the length of component i.
What happens when a function is delayed by τi? We replace t with t − τi in the function. So
Vi cos(2πfc(t − τi)) is received. Well, not the full story – reflections and diffractions also cause
phase changes (we discussed specifics for reflection in Section 4.5). Really, Vi cos(2πfc(t− τi) + φi)
is received, where φi is the sum of all phase changes caused by the physical propagation phenomena.
We’ve been using baseband notation, what is the complex baseband notation? It is Vie

j(−2πfcτi+φi).
So what is the total received voltage from all multipath?

VTOT =

M−1∑

i=0

Vie
j(−2πfcτi+φi) (29)

In other words, θi = −2πfcτi + φi. We’ve now written it in terms of its temporal delay, τi. Note
that VTOT has incidentally become a function of frequency fc.

13.3 Channel Impulse Response

What we have in (29) is a frequency response as a function of frequency fc. The equation can
show the frequency response at any frequency. Let f = fc, maybe that makes it clearer. So (29)
is a frequency-domain representation of the total voltage. Let’s convert to the time domain. How?
Using the inverse Fourier transform:

F

{
M−1∑

i=0

Vie
j(−2πfτi+φi)

}

=
M−1∑

i=0

ViF

{

ej(−2πfτi+φi)
}

=
M−1∑

i=0

Vie
jφiδ(τ − τi)

What this says is that in the time delay domain, the arrivals of multipath i occurs at delay τi.
This leads to how we frame the channel: as an echo-causing filter, with an impulse response

that is a sum of time-delayed impulses. Let s(t) be the transmitted signal and r(t) be the received
signal. Then

r(t) =
1

2
s(t) ⋆ h(τ)

where h(τ) is called the channel impulse response, and is given by

h(τ) =
M−1∑

i=0

aie
jφiδ(τ − τi) (30)

The ai are proportional to Vi but are unitless – the units are contained in s(t), which has units of
Volts. The amplitude |ai| is the amplitude gain in that path; the squared magnitude |ai|2 is the
power gain in that path. We often plot the squared magnitude of h(τ) in the dB domain and call
it the power delay profile. This is what Rappaport calls P (τ). He shows some examples in Figures
5.4 and 5.5.

We’ve also measured many of these in my lab. For example, Figure 16 shows three examples.
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Figure 16: Measured power delay profiles (power gain normalized to the power gain of the maximum
power path) in Salt Lake City (a) in residential area W of U. campus; (b) 4th S commercial district;
(c) Main St., downtown [17].

13.4 Received Power

What happens to the transmitted signal s(t) when it is convolved with h(τ)? Well, many copies
show up, at different time delays:

s(t) =

M−1∑

i=0

aie
jφis(τ − τi)

For example, what if a rectangular pulse was sent (in Digital Communications, many symbols look

like a pulse)? Let s(t) = rect
[

t
Tbb

− 1
2

]

. In this case,

s(t) =
M−1∑

i=0

aie
jφirect

[
t− τi
Ts

− 1

2

]

where Ts is the symbol duration. Essentially, we have versions of the rect pulse piling on top of
each other.

CASE 1: τi << Ts: If the τis are small compared to Ts,

s(t) ≈
(

M−1∑

i=0

aie
jφi

)

rect

[
t

Ts
− 1

2

]

then we have all of the pulses adding together, in a phasor sum. The sum might be constructive
or destructive. But it acts on the whole pulse.

CASE 2: τi aren’t small compared to Ts: We will have intersymbol interference, and will need
an equalizer in our receiver.

Note Ts is designed by us (the engineer). Why not make Ts big? Because the symbol rate is
1/Ts! You slow down data rate when increasing Ts.

6325 Only: Study the proof in Section 5.2.1 of Eθ [PWB ].
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13.5 Time Dispersion Parameters

There are lots of τi so lets provide a number with more specificity, a single number that summarizes
the size of the time dispersion: the RMS delay spread, στ ,

στ =
√

τ̄2 − τ̄2

τ̄ =

∑

i |ai|2τi∑

i |ai|2
=

∑

i P (τi)τi
∑

i P (τi)

τ̄2 =

∑

i |ai|2τ2i∑

i |ai|2
=

∑

i P (τi)τ
2
i

∑

i P (τi)

One good rule of thumb is that the receiver doesn’t need an equalizer if στ ≤ 0.1Ts.

Lecture 10

Today: (1) Fade Distribution, (2) Doppler, (3) Fading Demo

13.6 Review from Lecture 9

We showed how the complex baseband representation of the total received voltage can be written
as a sum of (complex) voltages due to the individual multipath components arriving at the receiver.

VTOT =

M−1∑

i=0

Vie
j(−2πfcτi+φi) (31)

The received power is Pr = |VTOT |2. Depending on the phases of these multipath components, the
magnitude |VTOT | may be destructive or constructive (or somewhere in between). As the receiver
moves, or as the center frequency changes, the magnitude |VTOT | will increase and decrease as the
phases of the paths change from adding constructively to destructively, and back.

The phases exp{−j2πfcτi} change at different rates for different i:

• Different multipath have different delays τi. If we change the frequency by ∆fc, the phase
change is proportional to ∆fcτi. So the phase changes on longer paths more quickly than on
shorter paths.

• As the receiver moves, the time delays τi change at different rates, as a function of the
angle-of-arrival. We discuss this in the Doppler fading section below.

We discussed how the wireless channel can be written as a linear filter, with an impulse response,
which we called h(τ). The received signal is the convolution of the transmitted signal with the
channel’s impulse response. If the channel includes many paths at wide delays, the RMS delay
spread will be high, and as a result, the symbol rate in any digital communication system must be
low.

14 Fade Distribution

With multipath fading so random, and so significant, how can we design a reliable system? This
section describes what we can quantify about multipath fading that then allows us to design reliable
wireless links.
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To proceed with this quantification, we need probabilistic analysis, which requires us to move
from considering purely “specular” multipath to combinations of specular and “diffuse” multipath:

• Specular multipath: What we’ve been talking about: individual multipath components, of
which we said there were M total, each with its own amplitude and phase.

• Diffuse multipath: multipath which are each infinitely low in power, but there are infinitely
many of them. Typically used to simulate the many many multipath that do arrive due to
scattering and diffraction. It is easier to talk about fading when we can lump lots and lots
of multipath into this “diffuse” camp, rather than specifying each individual multipath and
how much power each one has.

14.1 Rayleigh Fading

Main idea: all multipath are diffuse. These diffuse multipath have small amplitude and random
phase. Using the central limit theorem, and some probability (ECE 5510), we can come up with a
pdf of the magnitude of the received voltage, r = |VTOT |.

Here, the name of the random variable is R and the value r represents some number of interest.

fR(r) =

{
r
σ2 exp

(

− r2

2σ2

)

, r ≥ 0

0, o.w.
(32)

where σ is a parameter that can be set as needed. For example, if you know the mean value of the

signal magnitude is rmean, then you would set σ =
√

2
π rmean.

The most important function for the communication system designer is the cumulative dis-
tribution function (CDF). It tells us the probability that the envelope will fall below some value
r.

FR(r) = P [R ≤ r] =

{

1− exp
(

− r2

2σ2

)

, r ≥ 0

0, o.w.
(33)

Def’n: Fade Margin
the additional power loss which is included in the link budget in order to keep the received signal
power higher than the minimum, with high probability.

Example: Fade margin design: Rayleigh case
Assume that it is acceptable to have the received power fall below the receiver sensitivity 1% of
the time, and that the channel is Rayleigh. What fade margin (in dB) is required?
Solution: We are given P [R ≤ r] = 0.01. We want to find the threshold in terms of the mean
received signal level, so setting rmean = 1, we have that σ = 0.7979. Then, solving (33) for r,

exp

(

− r2

2σ2

)

= 0.99

r =
√

−2σ2 ln 0.99 = 0.1131

(34)

If the envelope falls to 0.1131, then the power falls to (0.1131)2 = 0.0128, which is equal to -18.9
dB. Since the mean value is 1, or 0 dB, the required fade margin is 0− (−18.9) = 18.9 dB.
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14.2 Ricean fading

Main idea: One specular path with amplitude V0 = A plus diffuse power.
The Rice distribution is named after its creator, Stephen O. Rice. I have his 1945 paper in my

office if you want to use it for a project. Note that people just can’t agree on the spelling of the
adjective made out of his name, whether it is “Rician” or “Ricean”. Google gives me 249k results
for “Rician” and 217k results for “Ricean”. Why not pick one? Who knows.

The pdf of Ricean fading is

fR(r) =

{
r
σ2 exp

(

− r2+A2

2σ2

)

I0
(
Ar
σ2

)
, r ≥ 0

0, o.w.
(35)

where A is the peak amplitude of the specular (dominant) signal, and I0(·) is the modified Bessel
function of the first kind and zeroth order. Note Matlab has a besseli(0, x) function. The
Ricean K-factor is defined as the ratio between the power in the specular components to the power
in the diffuse components,

K =
A2

2σ2
, or K(dB) = 10 log10

A2

2σ2
. (36)

Note that for K = 0 or K(dB) = −∞, the Ricean pdf is the same as the Rayleigh pdf.
There isn’t an analytical expression for the CDF, analogous to (33), unfortunately. So we need

to use a table or a figure. The Rappaport book only has a CDF plot for K = 6 dB. I am including
in Figure 17 a more complete Figure. Keep this figure with your notes, it will be included in Exam
2. It also includes Rayleigh, because Rayleigh is the same as Ricean when K = −∞.

Example: Fade margin design: Ricean case
Assume that it is acceptable to have the received power fall below the receiver sensitivity 1% of
the time, and that the channel is Ricean, with K-factor 3 dB, 9 dB, or 15 dB. What fade margin
(in dB) is required?
Solution: From the chart, on the horizontal line from 1%, the fade margin would be -15.5 dB, -7.0
dB, and -3 dB, for K-factor of 3 dB, 9 dB, and 15 dB, respectively.

15 Doppler Fading

So far we’ve talked about fading without movement. A static link has a fading loss. If you change
center frequency on a static link, you see frequency-dependent fading. But for a link with a static
center frequency but with TX and/or RX in motion, (1) the fading loss changes over time, and (2)
the frequency shifts. Why is this?

In lecture 9, we came up with the top expression for the complex baseband received voltage:

VTOT =

M−1∑

i=0

Vie
j(−2πfcτi+φi)

VTOT =
M−1∑

i=0

Vie
j(−2πdi/λc+φi)

The second expression is rewritten with di = cτi, where di is the distance multipath component
i travels. (Is this the straight-line from the TX to RX? Or the length of the line following the
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Figure 17: Ricean CDF for various K-factors. Note “Power Level” is 20 log10
r

rmedian
, and the y-axis

is the probability ×100 (percentage) that the power level (fading gain compared to the median) is
less than the value on the abscissa.
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path? Answer: the latter.) This showed us the frequency dependence of the fading channel gain,
which is 20 log10 |VTOT |. Now, let’s talk about what happens when the receiver is moving. Motion
causes the time delays to change, because the distance that the wave must travel is becoming either
shorter or longer. How much shorter or longer?

RX

Plane wave

of multipath

component i �move
�

move�
i

Add'l Dist.

-

Figure 18: The plane wave of a multipath component arrives at the receiver (•). Based on the
difference between the angle of movement θmove and the angle of arrival of the multipath component
θi, the multipath component distance di increases by cos(θmove − θi) multiplied by the distance of
travel of the receiver.

Let the angle of arrival of component i be θi, like the one shown in Figure 18. (Actually, consider
that multipath components will arrive with different θi.) Let’s assume I move ∆move meters in the
direction θmove. We assume that these waves are effectively plane waves in the local (small) area
near the antenna. Thus the only thing that changes when I move the antenna to a new position is
that the wave is lengthened (or shortened) by a factor of the distance I moved, multiplied by the
cosine of the angle in between θi and my direction of motion θmove. After my movement of ∆move

meters in the direction θmove, my VTOT becomes:

VTOT =
M−1∑

i=0

Vi exp

{

j

(

−2π

λc
[di +∆move cos(θmove − θi)] + φi

)}

15.1 One Component

First, keep things simple by considering only one arriving multipath.

VTOT = V0 exp

{

j

(

−2π

λc
[d0 +∆move cos(θmove − θ0)] + φ0

)}

Let’s consider when the antenna is moving at a constant velocity v meters per second. Then, at
time t, we have ∆move = vt. So,

VTOT = V0 exp

{

j

(

−2π

λc
[d0 + vt cos(θmove − θ0)] + φ0

)}

There’s a lot going on here, but we actually have not just a phase, but a complex sinusoid of,

fd = −v cos(θmove − θ0)

λc
(37)

This is called the Doppler shift. When one sends a frequency fc, the received frequency of the signal
has shifted up (or down, if fd is negative) by this factor.
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1. What happens when I move such that θi = θmove?

2. What happens when I move such that θi = θmove + 90 degrees?

3. What happens when I move such that θi = θmove + 180 degrees?

The worst case is called the maximum Doppler frequency, fm = |fd| = v/λc.

Example: What are the maximum Doppler frequencies for a mobile in a vehicle on
I-15, at 850 and 1950 MHz?

Solution: Given 1 mile per hour = 0.447 meters per second, let’s say a maximum speed of 80
miles/hr, which gives v = 35.8 m/s. Then fm = 101 Hz, or 232 Hz, for 850 or 1950 MHz,
respectively.

15.2 Many Components

Now, each component contributes a complex sinusoid of frequency fd = − v cos(θmove−θi)
λc

to the sum
VTOT . The effect is frequency spreading. That is, for each frequency that is sent, many frequencies
are received. In the frequency domain, the frequency content of the signal (say, S(ω)) is convolved
with the Doppler spectrum VTOT (ω)).

If there are diffuse multipath coming equally from all directions, then the power spectrum of
VTOT can be determined to be:

S(f) =
1.5

πfm

√

1−
(
f−fc
fm

)2

which is shown in Figure 5.20 on page 219 in Rappaport.

15.3 System Design Implications

The Doppler spread is said to have an effect when the symbol duration is long compared to 1/fm.
Specifically, let the coherence time TC be defined as TC = 0.423 1

fm
. Rappaport says that if Ts > TC ,

then you have “fast fading”, and demodulation will be difficult, because the channel changes during
one symbol period. Instead, one should design systems with Ts << TC , (for “slow fading”) or
equivalently, a symbol rate 1/Ts that is much greater than 1/TC . Typically, this is not a problem,
except for some OFDM systems which have long Ts.

See Figure 5.15 on page 211 in Rappaport for an example of Rayleigh fading. How often does
the power level drop cross a horizontal “threshold” line? This is the level crossing rate (LCR). For
the Clarke AOA spectrum model, the average number of level crossings per second is

NR =
√
2πfmρe−ρ2 ,

where ρ = r/Rrms, and Rrms is the root-mean square (RMS) average signal amplitude, and r is
the amplitude “level” you are using. For example, to check crossings that are 10 dB down from the
RMS received amplitude, use ρ = 10−10/10 = 0.1. Or, to check crossings that are 30 dB down from
the RMS received power, use ρ = 10−30/20 = 0.032. Another useful statistic is how long the signal
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stays below this threshold when it goes below it. This is the average fade duration, denoted t̄fade
(or τ̄ in Rappaport). Again, for the Clarke AOA spectrum model,

t̄fade =
eρ

2 − 1

ρfm
√
2π

Example: Fading statistics
Let 1/Ts = 1MHz, and use the solution for 1950 MHz highway driving above. What is the average
fade duration and level crossing rate for a fade that is 20 dB lower in power than the RMS received
power?

Lecture 11

Today: (1) Intro to Digital Communications

16 Digital Communications: Overview

My six word summary of digital communications: Use linear combinations of orthogonal
waveforms.

16.1 Orthogonal Waveforms

My “engineering” definition of a set of orthogonal waveforms: They are waveforms that can be
separated at the receiver.

Def’n: Orthogonal
Two real-valued waveforms (finite-energy functions) φ1(t) and φ2(t) are orthogonal if

∫ ∞

−∞
φ1(t)φ2(t)dt = 0

Two complex-valued waveforms φ1(t) and φ2(t) are orthogonal if

∫ ∞

−∞
φ1(t)y

∗(t)dt = 0

where y∗(t) is the complex conjugate of φ2(t).

Def’n: Orthogonal Set
N waveforms φ1(t), . . . , φN (t) are mutually orthogonal, or form an orthogonal set, if every pair of
waveforms φi(t), φj(t), for i 6= j, is orthogonal.

Example: Sine and Cosine
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Let

φ1(t) =

{
cos(2πt), 0 < t ≤ 1
0, o.w.

φ2(t) =

{
sin(2πt), 0 < t ≤ 1
0, o.w.

Are φ1(t) and φ2(t) orthogonal?
Solution: Using sin 2x = 2cos x sinx,

∫ ∞

−∞
φ1(t)φ2(t)dt =

∫ 1

0
cos(2πt) sin(2πt)dt

=

∫ 1

0

1

2
sin(4πt)dt

=
−1

8π
cos(4πt)

∣
∣
∣
∣

1

0

=
−1

8π
(1− 1) = 0

So, yes, φ1(t) and φ2(t) are orthogonal.

Example: Frequency Shift Keying
Assume Ts >> 1/fc, and show that these two are orthogonal.

φ0(t) =

{
cos (2πfct), 0 ≤ t ≤ Ts

0, o.w.

φ1(t) =

{

cos
(

2π
[

fc +
1
Ts

]

t
)

, 0 ≤ t ≤ Ts

0, o.w.

Solution: The integral of the product of the two must be zero. Checking, and using the identity
for the product of two cosines,

∫ Ts

0
cos (2πfct) cos

(

2π

[

fc +
1

Ts

]

t

)

dt

=
1

2

∫ Ts

0
cos (2πt/Ts) dt+

∫ Ts

0
cos (4πfct+ 2πt/Ts) dt

=
1

2

[
Ts

2π
sin (2πt/Ts)

∣
∣
∣
∣

Ts

0

+

[
1

2π(2fc + 1/Ts)
sin (2π(2fc + 1/Ts)t)

∣
∣
∣
∣

Ts

0

The second term has a 1
2π(2fc+1/Ts)

constant out front. Because fc is very high, this term will be
very very low. The sine term is limited to between -1 and +1 so it will not cause the second term
to be large. So we will approximate this second term as zero.

∫ ∞

−∞
φ1(t)φ2(t)dt ≈ 1

2

Ts

2π
[sin(2π) − sin(0)] = 0

Thus the two different frequency waveforms are orthogonal.
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16.2 Linear Combinations

What is a linear combination of orthogonal waveforms? Well, consider the orthogonal set φ1(t), . . . , φN (t).
A linear combination si(t) is

si(t) = ai,1φ1(t) + ai,2φ2(t) + · · · + ai,NφN (t) =
N∑

i=k

ai,kφk(t)

We also call the a linear combination a symbol. We use subscript i to indicate that it’s not the only
possible linear combination (or symbol). In fact, we will use M different symbols, so i = 1, . . . ,M ,
and we will use s1(t), . . . , sM (t).

We represent the ith symbol (linear combination of the orthogonal waveforms), si(t), as a vector
for ease of notation:

ai = [ai,1, ai,2, . . . , ai,N ]T

The superscript T is for transpose – ai is a column vector. Vectors are easy to deal with because
they can be plotted in vector space, to show graphically what is going on. We call the plot of all
possible ai, that is, for i = 1, . . .M , the constellation diagram. Some examples are shown in Figure
19.

16.3 Using M Different Linear Combinations

Here is how a transmitter uses the different linear combinations to convey digital bits to the
receiver. First, consider that there are M different symbols for the TX to chose from. Each symbol
is described by a log2 M -length bit sequence. For example, if there are 8 possible combinations, we
would label them 000, 001, 011, 010, 110, 111, 101, 100.

The transmitter knows which log2 M -bit sequence it wants to send. It picks the symbol that
corresponds to that bit sequence, let’s call it symbol i. Then it sends si(t).

If the receiver is able to determine that symbol i was sent, it will correctly receive those log2 M
bits of information. In this example, it will receive three bits of information.

16.4 Reception

At a receiver, because we’ve used an orthogonal set, we can determine how much of each waveform
was sent. This can be done using a bank of matched filters. In short, we can recover an attenuated
ai plus noise. We might write x = gai + ni where g is the total gain (g ≪ 1) introduced by
the channel and antennas, and ni is the random additive noise added in at the receiver. Assume
we have receiver gain that multiplies the received filter by 1/g (to cancel out g). If the resulting
âi = x/g is close enough to the actual transmitted signal ai, then the correct bit string is received.

How does the receiver compute the âi? It does this using a matched filter receiver. A matched
filter receiver has one bank for each orthogonal waveform (the φ1(t), . . . , φN (t). Bank k has a filter
that quantifies how much of φk(t) is present in the received signal. Because the waveforms are
orthogonal, the job is simple. An analogy would be to a really good division of labor between
members of a team – filter k comes up with the answer for waveform k, without being distracted
by the other waveforms which may or may not be present in the received signal.
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(a)

QPSK QPSK

(b)

M=8 M=16

(c)

M=64 QAM

Figure 19: Signal constellations for (a) M = 4 PSK (a.k.a. BPSK), (b) M = 8 and M = 16 PSK,
and (c) 64-QAM.

16.5 How to Choose a Modulation

A digital modulation is the choice of: (1) the linear combinations a1, . . . ,aM and, (2) the orthogonal
waveforms φ1(t), . . . , φN (t). We will choose a digital modulation as a tradeoff between the following
characteristics:

1. Bandwidth efficiency: How many bits per second (bps) can be sent per Hertz of signal band-
width. Thus the bandwidth efficiency has units of bps/Hz.

2. Power efficiency: How much energy per bit is required at the receiver in order to achieve a
desired fidelity (low bit error rate). We typically use S/N or Es/N0 or Eb/N0 as our figure
of merit.

3. Cost of implementation: Things like symbol and carrier synchronization, and linear transmit-
ters, require additional device cost, which might be unacceptable in a particular system.
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16.6 Intersymbol Interference and Bandwidth

To send a symbol, we will send a finite-duration waveform. This waveform requires some bandwidth.
We can find this bandwidth by taking the Fourier transform of the waveform.

For example, what is the bandwidth required to send a rectangular pulse? Let s0(t) = rect(t/Ts).
It has

S0(f) = Ts
sin(πfTs)

πfTs

This has frequency content at all frequencies, i.e., infinite bandwidth!
Can we send a new symbol every Ts and still not have symbols interfering with each other at

the receiver? Yes, we can! We mentioned orthogonality. Well, two symbols sent at different
times must also be orthogonal, so that we can send information at one time, and then at the
next, without interacting with each other.

As an example, again, rectangular pulses:

p0(t) =

{
1, 0 < t < Ts

0, o.w.

p1(t) =

{
1, Ts < t < 2Ts

0, o.w.

p2(t) =

{
1, 2Ts < t < 3Ts

0, o.w.

(38)

form an orthogonal set. The problem is, again, the infinite bandwidth.
Can we reduce the bandwidth and still have zero intersymbol interference? Yes. There is

a method to come up with pulse shapes that are orthogonal to other versions of itself that are
delayed by integer multiples of Ts. For more information, look in the book at Section 6.6.1, which
discusses the Nyquist zero intersymbol interference (zero ISI) criterion.

A good solution (although not the only possibility) is to use a pulse shape in the “square root
raised cosine” (SRRC) class. A pulse shape is SRRC if it has frequency domain representation
PSRRC(f),

PSRRC(f) =







√
Ts, 0 ≤ |f | ≤ 1−α

2Ts√

Ts
2

{

1 + cos
[
πTs
α

(

|f | − 1−α
2Ts

)]}

, 1−α
2Ts

≤ |f | ≤ 1+α
2Ts

0, o.w.

(39)

You can find p(t) by taking the inverse Fourier transform of the above expression, and an example
is shown in Figure 20.

There is a parameter α in (39) which describes the width of the spectrum. Specifically, the
bandwidth of signals sent using this pulse shape are (1 + α)/Ts. In other words, compared to the
symbol rate, the bandwidth is multiplied by a factor of 1+α. One would like α = 0, but that makes
the receiver’s work more prone to large errors when time synchronization is imperfect. Typically,
the minimum α we can build robust receivers for is the range of 0.2-0.3.

Lecture 12

Today: (1) Modulation (2) Fidelity, (3) Link Budgets & Modulation
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Figure 20: (a) Square root raised cosine pulses separated by Ts form an orthogonal set. These three
have α = 0.5. (b) SRRC pulses at various α parameters.

17 Modulation

Last lecture we talked about how a digital transmitter sends one of M symbols, that is, linear
combinations, of a small number N of orthogonal waveforms. The TX’s choice from the M possible
linear combinations lets it send one of log2M bits per symbol. This section talks specifically about
the choices for the orthogonal waveforms and the symbols

17.1 PAM

Three “types” of modulations only use one (orthogonal) waveform, φ0(t) = cos(2πfct)p(t), where
p(t) is the pulse shape. (It has nothing to be orthogonal to, except for waveforms sent during other
symbol periods.) A linear combination, then, is just ai,0p(t), for some constant ai,0. A few different
modulations are so named by their choice of M different choices of ai,0, for i = 0, . . . ,M − 1.

• On-off-keying (OOK): M = 2, and we choose a0,0 = 0, and a1,0 = 1. When sending a “0” bit,
the transmitter doesn’t send anything. It only actually transmits energy when sending a “1”
bit.

• Binary PAM, a.k.a. binary phase-shift-keying (BPSK): M = 2, and we choose a0,0 = −1,
and a1,0 = 1. Now, the amplitude of the sinusoid being transmitted is switched from a +1 to
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a −1, or vice versa, when the bit switches. This is also a phase shift of 180o, which is why it
can be called “phase shift” keying.

• M -ary PAM: Binary PAM is extended in M -ary PAM to include M (for M equal to some
power of 2) equally spaced amplitudes, centered on zero. So, for example, M = 4 PAM would
have a0,0 = −3, a1,0 = −1, a2,0 = +1, a3,0 = +3. In general, forM -ary PAM, ai,0 = 2i−M+1.

Note that differential phase shift keying (DPSK) is an implementation variant of BPSK, which
we will discuss next lecture.

17.2 M-ary QAM and PSK

Many types of modulations use the following two orthogonal waveforms:

φ0(t) = cos(2πfct)p(t)

φ1(t) = sin(2πfct)p(t)

where p(t), again, is the pulse shape. These symbols ai = [ai,0, ai,1]
T can then be plotted on a 2-D

graph, typically with the φ0(t) amplitude plotted on the horizontal axis, and the φ1(t) amplitude
plotted on the vertical axis.

There are two main “types” of modulations which use these two orthogonal waveforms:

• Phase-shift keying (PSK): PSK places all ai uniformly on the unit circle. That is, ‖ai‖ = 1
for all i. For M = 2, this is the same as BPSK. For M = 4, the symbols are spaced every 90
degrees and thus the constellation looks like the four corners of a square, and is also called
quadrature phase shift keying (QPSK). For M = 8, symbols are every 45 degrees apart.

• QAM: Generally, any modulation that uses φ0(t) and φ1(t) above can be considered as QAM.
So PSK is a sometimes a subtype of QAM. But QAM is not limited to ‖ai‖ = 1. For example,
square QAM has M = 22k for some integer k ≥ 4, where symbols are arranged in a square
grid, centered at zero. Note M = 4 square QAM is the same as QPSK. But M = 16 and
M = 64 are also common values of M for square QAM.

We drew five different constellation diagrams of PSK and QAM modulations in the Lecture 11
notes, on page 4.

Note that for QPSK or square M -QAM, you send log2 M bits total per symbol. We can also
look at the modulation as sending two independent signals, one on the in-phase (horizontal axis)
and one on the quadrature (vertical axis), each sending 1

2 log2 M bits per symbol.
Note that OQPSK and π/4 QPSK are variations on QPSK, that have equivalent fidelity per-

formance and identical bandwidth as QPSK, but they are “constant envelope” modulations, which
we will discuss next lecture.

Bandwidth: Note that for PAM, PSK, and QAM, assuming SRRC pulse shaping with rolloff
factor α, the null-to-null bandwidth of the signal is B = (1+α)/Ts, where 1/Ts is the symbol rate.

17.3 FSK

Binary FSK modulations use the following orthogonal waveforms:

φ0(t) = cos (2π [fc − n∆f ] t) p(t)

φ1(t) = cos (2π [fc + n∆f ] t) p(t)
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for some positive integer n, where ∆f = 1
4Ts

. We showed that for n = 2, that is, when the frequency
difference (“offset”) is 1/Ts, that the two are orthogonal. Standard binary FSK uses n = 2.

Bandwidth: For Binary FSK, when a SRRC pulse is used in p(t), the transmitted signal
bandwidth is given by

B = 2n∆f + (1 + α)Rs

where Rs = Rb = 1/Tb. So, for Binary FSK,

B = 4
1

4Ts
+ (1 + α)Rs = (2 + α)Rs

17.4 MSK

You can also show that orthogonality is achieved for any integer n in (40). Since putting the
two sinusoids closer together reduces the bandwidth of the signal, this is a good idea for spectral
efficiency. When n = 1 binary FSK is called minimum shift keying (MSK).

But MSK is actually the same as OQPSK with a half-cosine pulse shape. This is not something
we discuss until next lecture.

17.5 Receiver Complexity Options

One issue in receivers is the costs of coherent vs. non-coherent reception.

Def’n: Coherent Reception
A receiver is coherent if it is phase-synchronous, that is, it estimates and then uses the phase of
the incoming signal.

Coherent reception requires a phase-locked loop (PLL) for each different carrier frequency in
the signal. This can be a problem for FSK receivers that have high M . Also, accurate phase-locked
loops can be difficult to achieve for mobile radios for cases with high Doppler.

Differential reception is another technique to aid receivers which operate without accurate phase.
When Doppler is present, and the coherent receiver ends up with a consistent phase error of 180
degrees, a standard receiver will flip every subsequent bit estimate. A differential receiver encodes
only the change in phase. In the same case, when the phase is flipped by 180 degrees, one bit error
will be made because of the flip, but the subsequent bits will be all correct.

18 Fidelity

Now, let’s compare the fidelity (probability of bit error and probability of symbol error) across
different modulations and receiver complexity options. For the same energy per bit, using a different
modulation would result in a different fidelity.

Recall N = FkT0B. We also define N0 = FkT0, so that N = N0B. The units of N0 are Watts
per Hertz, or equivalently, Joules.

The signal power at the receiver can also be written in terms of the energy per symbol or energy
per bit. Since energy is power times time, the energy used to send a symbol duration Ts is Es = STs,
where S is the received power Pr, and Es has units Joules per symbol. To calculate the energy
needed to receive one bit, we calculate Eb = STs/ log2 M Joules per bit. To shorten this, we define
Tb = Ts/ log2M and then Eb = STb or Eb = S/R, where R = 1/Tb is the bit rate.
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Name P [symbol error] P [bit error]

BPSK = Q
(√

2Eb
N0

)

same

OOK = Q
(√

Eb
N0

)

same

DPSK = 1
2 exp

(

− Eb
N0

)

same

M-PAM = 2(M−1)
M Q

(√
6 log2 M
M2−1

Eb
N0

)

≈ 1
log2 M

P [symbol error]

QPSK = Q
(√

2Eb
N0

)

M-PSK ≤ 2Q
(√

2(log2 M) sin2(π/M) Eb
N0

)

≈ 1
log2 M

P [symbol error]

Square M-QAM ≈ 4
log2 M

(
√
M−1)√
M

Q

(√
3 log2 M
M−1

Eb
N0

)

2-non-co-FSK = 1
2 exp

[

− Eb
2N0

]

same

M-non-co-FSK =
∑M−1

n=1 (M−1
n ) (−1)n+1

n+1 exp
[

−n log2 M
n+1

Eb
N0

]

= M/2
M−1P [symbol error]

2-co-FSK = Q
(√

Eb
N0

)

same

M-co-FSK ≤ (M − 1)Q
(√

log2 M
Eb
N0

)

= M/2
M−1P [symbol error]

Table 1: Summary of probability of bit and symbol error formulas for several modulations.

The probability of bit error is a function of the ratio Eb/N0. For example, for BPSK,

Pe,BPSK = Q

(√

2Eb
N0

)

where Q (z) is the tail probability of a Gaussian r.v., given by

Q (z) =
1

2
erfc

(
z√
2

)

Put this into Matlab or your calculator, it is a useful function. You might also use the table or
graph on pages 645-646 of the Rappaport book.

Other symbol error rates and bit error rates for a variety of modulations is shown in Table 18.
What are the most important? In my opinion: BPSK, DPSK, QPSK, 16-QAM, 64-QAM,

2-non-co-FSK, 2-co-FSK. For the homework, you will make a table, for each modulation, listing
P [bit error] formula, and bandwidth. You will also plot P [bit error] as a function of Eb

N0
. Both

will be very useful to have in your portfolio so that you have them available on the exam 2. An
example is shown in Figure 21.

19 Link Budgets with Digital Modulation

Link budgeting was discussed in the first part of this course assuming that the required SNR was
known. But actually, we deal with a required Eb

N0
. Note

Eb
N0

=
S

N0

1

Rb
=

S

N

B

Rb
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Figure 21: Comparison of probability of bit error for BPSK and Differential BPSK.

Typically the ratio of bandwidth to bit rate is known. For example, what is B
Rb

for SRRC pulse
shaping?
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Figure 22: Link Budgeting including Modulation: This relationship graph summarizes the relation-
ships between important variables in the link budget and the choice of modulation.

19.1 Shannon-Hartley Channel Capacity

We’ve talked about S/N , the signal power (S) to noise power (N) ratio. In the link budget section,
we provided a S/N required for a given modulation. Here, we talk about the fundamental limits
for bandwidth efficiency for a given S/N .
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Def’n: Bandwidth efficiency
The bandwidth efficiency of a digital communication system is ratio of ηB = R/B, where R is
the bits per second achieved on the link, and B is the signal bandwidth occupied by the signal.
Bandwidth efficiency has units of bits per second per Hertz.

The limit on bandwidth efficiency is given by Claude Shannon [23], who extended work by
Ralph Hartley (a UofU alum!). The Shannon-Hartley theorem is,

Rmax

B
= log2

(

1 +
S

N

)

where Rmax is the maximum possible bit rate which can be achieved on the channel for the given
signal to noise ratio.

Example: Maximum for various S/N (dB)
What is the maximum bandwidth efficiency of a link with S/N(dB) = 10, 15, 20? What maximum
bit rate can be achieved per 30 kHz of spectrum (one AMPS/USDC channel)? Is this enough for
3G?
Solution: S/N(dB) = 10, 15, 20 translates into S/N = 10, 31.6, 100. Then

Rmax

B
= log2 (11) = 3.46

Rmax

B
= log2 (32.6) = 5.03

Rmax

B
= log2 (101) = 6.66

With 30 kHz, multiplying, we have Rmax = 104, 151, 200 kbps. No, this isn’t enough for 3G cellular,
which says it aims to achieve up to 14 Mbps.

Shannon’s bound is great as engineers, we can come up with a quick answer for what we cannot
do. But it doesn’t necessarily tell us what we can achieve. The problem is that it is very difficult
to get within a couple of dB of Shannon’s bound. So, then we have to resort to the performance
equations for particular modulation types.

19.2 Examples

Example: 200 kHz

What bit rate can be achieved on a 200 kHz if the S/N ratio is 20 dB?

Example: 1.25 MHz

What bit rate can be achieved on a 200 kHz if the S/N ratio is 12 dB?

Lecture 13

Today: (1) Implementation Costs
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19.3 Q-Function and Inverse

TABLE OF THE Q−1 (·) FUNCTION:
Q−1

(
1× 10−6

)
= 4.7534 Q−1

(
1× 10−4

)
= 3.719 Q−1

(
1× 10−2

)
= 2.3263

Q−1
(
1.5× 10−6

)
= 4.6708 Q−1

(
1.5× 10−4

)
= 3.6153 Q−1

(
1.5 × 10−2

)
= 2.1701

Q−1
(
2× 10−6

)
= 4.6114 Q−1

(
2× 10−4

)
= 3.5401 Q−1

(
2× 10−2

)
= 2.0537

Q−1
(
3× 10−6

)
= 4.5264 Q−1

(
3× 10−4

)
= 3.4316 Q−1

(
3× 10−2

)
= 1.8808

Q−1
(
4× 10−6

)
= 4.4652 Q−1

(
4× 10−4

)
= 3.3528 Q−1

(
4× 10−2

)
= 1.7507

Q−1
(
5× 10−6

)
= 4.4172 Q−1

(
5× 10−4

)
= 3.2905 Q−1

(
5× 10−2

)
= 1.6449

Q−1
(
6× 10−6

)
= 4.3776 Q−1

(
6× 10−4

)
= 3.2389 Q−1

(
6× 10−2

)
= 1.5548

Q−1
(
7× 10−6

)
= 4.3439 Q−1

(
7× 10−4

)
= 3.1947 Q−1

(
7× 10−2

)
= 1.4758

Q−1
(
8× 10−6

)
= 4.3145 Q−1

(
8× 10−4

)
= 3.1559 Q−1

(
8× 10−2

)
= 1.4051

Q−1
(
9× 10−6

)
= 4.2884 Q−1

(
9× 10−4

)
= 3.1214 Q−1

(
9× 10−2

)
= 1.3408

Q−1
(
1× 10−5

)
= 4.2649 Q−1

(
1× 10−3

)
= 3.0902 Q−1

(
1× 10−1

)
= 1.2816

Q−1
(
1.5× 10−5

)
= 4.1735 Q−1

(
1.5× 10−3

)
= 2.9677 Q−1

(
1.5 × 10−1

)
= 1.0364

Q−1
(
2× 10−5

)
= 4.1075 Q−1

(
2× 10−3

)
= 2.8782 Q−1

(
2× 10−1

)
= 0.84162

Q−1
(
3× 10−5

)
= 4.0128 Q−1

(
3× 10−3

)
= 2.7478 Q−1

(
3× 10−1

)
= 0.5244

Q−1
(
4× 10−5

)
= 3.9444 Q−1

(
4× 10−3

)
= 2.6521 Q−1

(
4× 10−1

)
= 0.25335

Q−1
(
5× 10−5

)
= 3.8906 Q−1

(
5× 10−3

)
= 2.5758 Q−1

(
5× 10−1

)
= 0

Q−1
(
6× 10−5

)
= 3.8461 Q−1

(
6× 10−3

)
= 2.5121

Q−1
(
7× 10−5

)
= 3.8082 Q−1

(
7× 10−3

)
= 2.4573

Q−1
(
8× 10−5

)
= 3.775 Q−1

(
8× 10−3

)
= 2.4089

Q−1
(
9× 10−5

)
= 3.7455 Q−1

(
9× 10−3

)
= 2.3656
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Example: Range Comparison
Consider a wireless LAN system at fc = 900 MHz with Pt =1 W, Gt = 2, Gr = 1.6, a receiver noise
figure F = 8, a fade margin of 18 dB, SRRC pulse shaping with α = 0.25, and path loss given by
the log-distance model with np = 3.2 after a reference distance 1 meter (and free space up to 1 m).

1. Use DPSK with 1 Mbps, with a P[bit error] of 10−3 or 10−6.

2. Use 64-QAM with 8 Mbps, with a P[bit error] of 10−3 or 10−6.

Solution: For DPSK, P [bit error] = 1
2 exp

(

− Eb
N0

)

. So for P [bit error] = 10−3,

Eb
N0

= − ln(2P [bit error]) = 6.2

The bit rate is Rb = 106. So
S

N0
=

Eb
N0

Rb = 6.2× 1061/s

The N0 = kT0F , in our case,

N0 = kT0F = 1.38 × 10−23J/K 290K 8 = 3.2 × 10−20J

So S (which is the received power, the same thing as Pr),

Pr = S =
Eb
N0

RbN0 = 6.2× 1061/s 3.2× 10−20J = 1.99 × 10−13W

or Pr(dBW ) = −127.0 dBW. Then using the path loss equations,

P0(1m) = 10 log10

(

PtGtGr

(
λ

4π(1m)

)2
)

= −26.5 dBW (40)

Then, we can formulate the link budget:

Pr = P0(1m) − 10n log10
d

1m
− Fade Margin

−127dBW = −26.5dBW − 32 log10
d

1m
− 18

−82.5dBW = −32 log10
d

1m

d = 1m× 1082.5/32 ≈ 380m (41)

For P [bit error] = 10−6,
Eb
N0

= − ln(2P [bit error]) = 13.1

So ,

Pr = S =
Eb
N0

RbN0 = 13.1 × 1061/s 3.2 × 10−20J = 4.2× 10−13W
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or Pr(dBW ) = −123.7 dBW. From the link budget:

−123.7dBW = −26.5dBW − 32 log10
d

1m
− 18

−79.2dBW = −32 log10
d

1m

d = 1m× 1079.2/32 ≈ 300m (42)

For 64-QAM:

Pr bit error =
4

log2 M

(
√
M − 1)√
M

Q

(√

3 log2 M

M − 1

Eb
N0

)

with M = 64, log2 64 = 6 and
√
64 = 8, so

Pr bit error =
7

12
Q

(√

2

7

Eb
N0

)

So
Eb
N0

=
7

2

[

Q−1

(
12

7
Pr bit error

)]2

For Pr bit error = 10−3, we need the Q−1 of argument 12
7 × 10−3 = 1.7 × 10−3. From the

Q-inverse figure, we get approximately 2.9. Then Eb
N0

= 3.5(2.9)2 = 29.4.

For Pr bit error = 10−6, we need the Q−1 of argument 1.7 × 10−6. From the Q-inverse figure,
we get approximately 4.65. Then Eb

N0
= 3.5(4.65)2 = 75.7.

We could complete this problem by using these two different values of Eb
N0

in the link budget
part of the solution given above for DPSK, but this is left out of these notes.

20 Implementation Costs

20.1 Power Amplifiers and Constant Envelope

Recall that the PAM modulation format uses waveforms that are orthogonal at different time
periods. For time period k, we can write φ0(t− kTs) = p(t− kTs) cos(2πfct), for a pulse shape p(t)
and a carrier frequency fc. The total transmitted signal is a linear combination of symbols sent at
different symbol periods:

s(t) =
∑

k

a
(k)
0 p(t− kTs) cos(2πfct) = cos(2πfct)

∑

k

a
(k)
0 p(t− kTs) (43)

where a
(k)
0 is the amplitude of φ0 during symbol k. This cosine term itself has constant power

(power itself for a wave is a short time-average of the squared value). So the power at time t is
proportional to the square of the

∑

k a
(k)p(t− kTs) term. Consider Figure 23, which shows s(t) for

binary PAM when three symbols are sent in a row (k = 0, 1, 2). The “envelope” of the signal is the
dashed line skirting the maximum of the signal. The “power” is the envelope squared. Note that
the power is very close to zero between symbols, a value much smaller than the maximum power.

A metric to quantify the envelope changes is the peak-to-average power ratio (PAPR). The
PAPR is defined as

PAPR =
Maximum Power

Average Power
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Envelope

TX Signal

Figure 23: Transmitted signal and signal envelope for an example BPSK signal. Modified from
Rappaport Figure 6.19.

where “Envelope” is the power in transmitted signal s(t). Of course, the maximum is always greater
than the average, so the PAPR ≥ 1. But when the max power is not very large compared to the
average power, then the PAPR is close to 1, and we say the signal has a constant envelope.

A power amplifier at the transmitter to take the transmitted signal and amplify it to the desired
output power (e.g., 500 mW for cellular). Power amplifiers waste some energy, and are rated by
their efficiency. Amplifiers that can deal with any signal you send to it are about 50% efficient
(Class A amplifiers). However, the most efficient (Class C) amplifiers (90% efficient) require a
constant envelope modulation. Designers thus tend to choose constant envelope modulations for
battery-powered transmitters.

In the next section, we compare QPSK (which is not constant envelope) with O-QPSK (which
is considered constant envelope).

20.1.1 Offset QPSK

For QPSK, we used orthogonal waveforms:

φ0(t) = cos(2πfct)p(t)

φ1(t) = sin(2πfct)p(t)

Essentially, there are two 90 degree offset sinusoids multiplying the same pulse shape. After Ts,
these sinusoids will multiply p(t− Ts). The effect is similar to Figure 23, but with both cosine and
sine terms lined up. Following the notation of (43),

s(t) = cos(2πfct)
∑

k

a
(k)
0 p(t− kTs) + sin(2πfct)

∑

k

a
(k)
1 p(t− kTs)
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We can look at the complex baseband signal as

s̃(t) =
∑

k

a
(k)
0 p(t− kTs) + i

∑

k

a
(k)
1 p(t− kTs)

The magnitude |s̃(t)| is the envelope of signal s(t) and |s̃(t)|2 is its power.
Whenever a0 switches sign between symbol k − 1 and symbol k, the linear combination of the

pulses will go through zero. When this happens for both a0 and a1, the envelope and power go
through zero. This means that a linear amplifier (class A) is needed. See Figure 24(b) to see this
graphically.

For offset QPSK (OQPSK), we delay the quadrature Ts/2 with respect to the in-phase. Now,
our orthogonal waveforms are:

φ0(t) = cos(2πfct)p(t)

φ1(t) = sin(2πfct)p

(

t− Ts

2

)

Now, the complex baseband signal is,

s̃(t) =
∑

k

a
(k)
0 p(t− kTs) + i

∑

k

a
(k)
1 p(t− [k + 1/2]Ts)

Now, even when both a0 and a1 switch signs, we don’t see a zero envelope. When a0 switches sign,
the real part will go through zero, but the imaginary part is at a maximum of the current p(t) pulse
and is not changing. See Figure 24(d). The imaginary part doesn’t change until Ts/2 later.

At the receiver, we just need to delay the sampling on the quadrature half of a sample period
with respect to the in-phase signal. The new transmitted signal takes the same bandwidth and
average power, and has the same Eb

N0
vs. probability of bit error performance. However, the envelope

|s(t)| is largely constant. See Figure 24 for a comparison of QPSK and OQPSK.
There are some disadvantages of OQPSK: Because the amplitudes of both φ0 and φ1 do not

change at the same time, timing synchronization at the receiver can be (somewhat) more difficult
[20]. In addition, it is difficult to implement differential decoding with OQPSK.

20.1.2 Other Modulations

What are other modulations that do or do not have a constant envelope?

1. π/4 QPSK: see the Rapppaport book – alternate between the standard QPSK constellation
in Figure ?? (a), and a π/4 radians rotated version of the same constellation for the next
symbol period. The envelope will not go as close to zero as QPSK, but is still not considered
constant envelope. Used in IS-54.

2. FSK: FSK modulations DO have a constant envelope.

3. M -QAM: Square M -QAM modulations DO NOT have a constant envelope, and are generally
even worse than QPSK in that they need a linear amplifier.
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Figure 24: Matlab simulation of (a-b) QPSK and (c-d) O-QPSK, showing the (d) largely constant
envelope of OQPSK, compared to (b) that for QPSK.

20.2 Synchronization

There are two main kinds of synchronization which we require in a receiver:

1. Phase: To multiply by the correct sine or cosine, we need to know the phase of the incoming
signal. Typically, we track this with a phase-locked loop (PLL). PLLs can be difficult to
implement.

2. Symbol Timing: One must synchronize to the incoming signal to know when to sample the
symbol value. Errors in sampling time introduce inter-symbol interference (ISI). Using a lower
α makes a receiver more sensitive to symbol synch errors.

In this section, we present two different ways to simplify phase synchronization.

20.2.1 Energy Detection of FSK

FSK reception can be done via a matched filter receiver, in which there is a multiply and integrate
with each orthogonal waveform (in this case, sinusoids at different frequencies). This is shown in
Figure 25. This is called “coherent reception” of FSK. For binary FSK, there must be 2 PLLs,
which have more difficulty, because the received signal contains each frequency sinusoid only half of
the time. FSK is popular in inexpensive radios; so two PLLs might be significant enough additional
cost to preclude their use.
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Figure 25: Phase-coherent demodulation of M -ary FSK signals, from Proakis & Salehi [22], Figure
7.46.

A non-coherent binary FSK receiver avoids PLLs altogether by simply computing the energy
Efk at each frequency fk, for k = 0, 1. It decides the bit by seeing which energy, Ef0 or Ef1 , is
higher.

To calculate the energy, it still must multiply and integrate with a cosine and sine at each
frequency. That’s because if it just multiplies with the cosine, for example, and the phase of the
received signal makes it a sine, then the multiply and integrate will result in zero (sine and cosine
are orthogonal, after all). But if you find the energy in the cosine, xIk, and the energy in the cosine,

xQk , then the total energy at frequency k is

Efk = (xIk)
2 + (xQk )

2

is calculated for each frequency fk, k = 0, 1.
The downside of non-coherent reception of FSK is that the probability of bit error increases.

The optimal, coherent FSK receiver has performance Q
(√

Eb
N0

)

. The non-coherent binary FSK

receiver has probability of bit error of 1
2 exp

[

− Eb
2N0

]

. There is about a 1 dB difference between the

two – to achieve the same probability of bit error, the non-coherent receiver must have about 1 dB
more received power.

20.2.2 Differential PSK

In BPSK, the bit is encoded by the sign of the sinusoid. But the sign is just a 180 degree phase
shift in the sinusoid. So when we receive the signal and lock our PLL to the signal, we’ll see the
phase changing 180 degrees, but we won’t know which one is positive and which one is negative.
One thing that we can do is to encode the bit using the change of phase. That is, change the phase
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Figure 26: Demodulation and square-law detection of binary FSK signals, from Proakis & Salehi
[22], Figure 7.49.

180 degrees to indicate a “1” bit, and keep the phase the same to indicate a “0” bit. This is called
differential encoding. In the RX, we’ll keep track of the phase of the last symbol and compare
it to the phase of the current symbol. When that change is closer to 180 degrees than 0 degrees
we’ll decide that a “1” bit was sent, or alternatively, if that change is closer to 0 degrees than 180
degrees, we’ll decide that a “1” bit was sent. This is called differential phase shift keying (DPSK)
instead of BPSK. The downside of BPSK is that once we’re off by 180 degrees, every bit will be
decided in error. Instead, DPSK never becomes 100% wrong, it degrades gracefully with phase
(and thus frequency) offset.

The downside of DPSK is that the probability of bit error increases. The optimal BPSK receiver

has performance Q
(√

2Eb
N0

)

. The DPSK receiver has probability of bit error of 1
2 exp

[

− Eb
N0

]

. There

is about a 1 dB difference between the two – to achieve the same probability of bit error, the DPSK
receiver must have about 1 dB more received power.

Lecture 14

Today: (1) OFDM

21 Multi-carrier Modulation

The basic idea for multi-carrier modulation is to divide the total available bandwidth B into N
different subchannels. In each subchannel, we’ll use some particular modulation, and send all
signals on all subchannels simultaneously. Considering orthogonal waveforms, we’ll use both the
sin and the cosine function at many different frequencies.

The benefit is that with narrower bandwidth subchannels, we can achieve flat fading on each
subchannel. Remember, if the bandwidth is low enough, we don’t need an equalizer, because the
channel experiences flat fading. (Q: What was the rule given in the Rappaport book given Ts and
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στ to determine if fading is flat or frequency selective?)
So we will set N high enough so that the symbol rate in each subchannel (which is B/N wide)

will be high enough to “qualify” as flat fading. How do you determine the symbol period TN to
make the signal fit in B/N bandwidth? (Here we are calling the multicarrier modulation symbol
period TN to match the notation in the Goldsmith handout). Recall the bandwidth (now B/N) is
given by 1

TN
(1 + α) for rolloff factor α so now TN = N

B (1 + α). The Goldsmith book denotes Ts as
the symbol period that a single carrier system would have used for the same total bandwidth B,
that is, Ts = (1 + α)/B.

If we use TN ≥ 10στ then now we can choose N as

N ≥ 10στB
1

1 + α

Now, bit errors are not an ‘all or nothing’ game. In frequency multiplexing, there are N parallel
bitstreams, each of rate log2(M)/Ts, where log2(M)/Ts is the bit rate on each subchannel. As a
first order approximation, a subchannel either experiences a high SNR and makes no errors; or is
in a severe fade, has a very low SNR, and experiences a BER of 0.5 (the worst bit error rate!). If γ
is the probability that a subchannel experiences a severe fade, the overall probability of error will
be 0.5γ.

Frequency multiplexing is typically combined with channel coding designed to correct a small
percentage of bit errors.

Note that the handout uses TN for the symbol period in multicarrier modulation systems. They
reserve Ts to be the symbol period of the single-carrier system that had the bandwidth B, that
is, TN/N . Worse, the OFDM symbol period is called T , which is slightly more than TN , as we
describe below. Please make a note.

21.1 OFDM

In the previous section we made no restriction on the frequencies of the subcarriers. Well, we know
that to have orthogonal sinusoids at different frequencies, we need a particular condition on ∆f
between the two frequencies.

21.1.1 Orthogonal Waveforms

In FSK, we use a single basis function at each of different frequencies. In QAM, we use two basis
functions at the same frequency. OFDM is the combination:

φ0,I(t) = p(t) cos(2πfct)

φ0,Q(t) = p(t) sin(2πfct)

φ1,I(t) = p(t) cos(2πfct+ 2π∆ft)

φ1,Q(t) = p(t) sin(2πfct+ 2π∆ft)

...

φN−1,I(t) = p(t) cos(2πfct+ 2π(N − 1)∆ft)

φN−1,Q(t) = p(t) sin(2πfct+ 2π(N − 1)∆ft)

where ∆f = 1
TN

, and p(t) is the pulse shape (typically a SRRC pulse). These are all orthogonal
functions! Note we have 2N basis functions here. But, we can transmit much more information
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than possible in M -ary FSK for M = 2N , because we use an arbitrary linear combination of
the φ() rather than sending only one orthogonal waveform at a time. In other words, rather than
transmitting on one of the M carriers at a given time (like FSK) we transmit information in parallel
on all N channels simultaneously. An example state space diagram for N = 3 and PAM on each
channel is shown in Figure 27.

OFDM, 3 subchannels
of 4-ary PAM

Figure 27: Signal space diagram for N = 3 subchannel OFDM with 4-PAM on each channel.

Note that the subchannels overlap. They are separated by 1/TN , but the bandwidth of any
subcarrier is (1+α)/TN , because of the square root raised cosine (SRRC) pulse. Nevertheless, they
are orthogonal so they can be separated at the receiver.

21.1.2 Fourier Transform Implementation

The signal on subchannel k might be represented as:

xk(t) = p(t) [ak,I(t) cos(2πfkt) + ak,Q(t) sin(2πfkt)]

The complex baseband signal of the sum of all N subchannel signals might then be represented as

xl(t) = p(t)R

{
N∑

k=1

(ak,I(t) + jak,Q(t))e
j2πk∆ft

}

xl(t) = p(t)R

{
N∑

k=1

Ak(t)e
j2πk∆ft

}

(44)

where Ak(t) = ak,I(t) + jak,Q(t). Does this look like an inverse discrete Fourier transform? If
yes, than you can see why it might be possible to use an IFFT and FFT to generate the complex
baseband signal.

FFT implementation: There is a particular implementation of the transmitter and receiver
that use FFT/IFFT operations. This avoids having N independent transmitter chains and re-
ceiver chains. The FFT implementation (and the speed and ease of implementation of the FFT in
hardware) is why OFDM is currently so popular.
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21.1.3 Cyclic Prefix

However, because the FFT implementation assumes that the data is periodic, and it is not, we
must add a cyclic prefix at the start of each block of N symbols. The cyclic prefix is length µTs

and is an overhead (doesn’t contain data) and thus increases the symbol period. Thus for OFDM,
we calculate the OFDM symbol period T = TN + µTs. This reduces our overall data rate because
the symbol period is longer, and no new data is sent during this µTs cyclic prefix period. The
actual data rate will be the total bit rate multiplied by N

N+µ . We determine µ to be longer than
the expected delay spread στ . So, µ ≥ στ/Ts.

21.1.4 Problems with OFDM

Note that one of the big problems with OFDM is that it requires linear amplifiers, because of its
high peak-to-average ratio (PAR). The Goldsmith handout does a great job of proving that the
peak to average ratio is approximately N , the number of subcarriers, so for reasonable N , you
would need a linear amplifier.

OFDM is also sensitive to timing and frequency offset errors. In a mobile radio system corrupted
by Doppler spread, each carrier is spread into the next one, causing the subcarriers to no longer be
orthogonal to each other.

21.1.5 Examples

Example: 802.11a
IEEE 802.11a uses OFDM with 52 subcarriers. Four of the subcarriers are reserved for pilot tones,
so effectively 48 subcarriers are used for data. Each data subcarrier can be modulated in different
ways. One example is to use 16 square QAM on each subcarrier (which is 4 bits per symbol per
subcarrier). The symbol rate in 802.11a is 250k/sec. Thus the bit rate is

250 × 103
OFDM symbols

sec
48

subcarriers

OFDM symbol
4
coded bits

subcarrier
= 48

Mb (coded)

sec

Example: Outdoor OFDM System Design
Design an OFDM system to operate in a 20 MHz bandwidth at 1300 MHz in outdoor environments
with large delay spreads of στ = 4µs. Determine: (1) Does we need multicarrier modulation, and
if so, why? (2) The number of subcarriers. (3) The overhead of the cyclic prefix. (4) The symbol
period. (5) The data rate of the system assuming M = 4 and coding with rate 1/2 is used to
correct bit errors.
Solution:

1. A single carrier system would have symbol period Ts = 1/20MHz or Ts = 50 ns. The
delay spread, 4 microseconds, is huge compared to 0.05 microseconds, so we definitely need
multicarrier modulation to mitigate the intersymbol interference.

2. We want BN = B/N ≪ 0.1/στ , that is, ≪ 25kHz. Note we also want N to be a power of
2 for ease of implementation via the FFT. B = 20 MHz divided by 25 kHz is 800, so we’d
choose N = 1024, which results in a subcarrier bandwidth BN of 20 MHz /1024 = 19.5 kHz.

3. Calculating, µ, the overhead of the cyclic prefix, is µ = στ/Ts = 80.
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4. The symbol period for OFDM is or TN + µTs = N/B + µ/B = (N + µ)/B = (1024 + 80)50
ns = 55.2µs.

5. Each carrier generates log2 4 = 2 bits per symbol period. There are 1024 carriers, for a
total of 2048 bits per symbol. Since one symbol equals 55.2 × 10−6s, the raw data rate is
2048/(55.2× 10−6) = 37.1 Mbps. Half of those bits (for rate 1/2 coding) are code bits, so the
real data rate is 111/2 = 18.5 Mbps.

Lecture 15

Today: (1) FEC Coding (2) Error Detection

22 Forward Error Correction Coding

The material for this section comes largely from Jeff Frolik’s MUSE channel coding video, available
at:

• http://www.uvm.edu/~muse/CTA.html

Def’n: Forward error correction coding or channel coding
Adding redundancy to our data at the transmitter with the purpose of detecting and correcting
errors at the receiver.

The transmitter takes in data bits and puts out coded bits. Our notation is that for each k
data bits input to the FEC operator, the FEC operation will produce n > k coded bits out.

22.1 Block vs. Convolutional Coding

Def’n: (k, n) Block Code
A (k, n) block code inputs k-bits which are accumulated (via serial-to-parallel conversion) in a k-
length vector d. Block encoding multiplies d by a k×n generator matrix, G, to output a n-length
bit vector c. Block decoding then multiplies the received vector r by the syndrome matrix S to
determine if any errors occurred and determine which (if any) bits were in error out of the n sent.

The syndrome is just a rearrangement of the transpose of the generator matrix, as shown by
example below.

In contrast, a convolutional code is a “running” code. For encoding, bits are input into what is
effectively a binary filter, the output bits are dependent on the current and past bits.

Compare the advantages and disadvantages:

• Block code: Advantages: Better for data that is not coming in large streams (bursty data
sources, <1000 bits), e.g., wireless sensor networks. Pretty simple computation. Not the best
one can do in terms of improving energy efficiency / removing errors. Block codes are used
in CDs, DVDs, and disk drives.
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• Convolutional codes: Advantages: Best for very large data streams. More energy efficient
than block codes when you have large streams of data. Convolutional codes are used in: deep
space communication (Voyager program), satellite and terrestrial digital video broadcasting.
Disadvantages: Computational complexity increases exponentially in the length of the code.
Andrew Viterbi (founder of Qualcomm) is credited with the optimal decoder, called the
Viterbi algorithm.
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n bits
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Figure 28: Block diagram of a communication system emphasizing the forward error correction
(FEC) “block coding” encoder and decoder.

22.2 Block Code Implementation

Let the input be denoted d, a k-bit vector. Let the output be c, a n-bit vector. Let G be the
generator matrix. Then

c = dG

Thus the G matrix has size k × n. This operation is done modulo-2. That is, multiply all of the
pairs, sum them, and then take the mod 2 of the result. That is, if the sum of the products is even,
the answer is 0, if the sum is odd, the answer is 1.

Def’n: Systematic
The first k bits of the n bits output, are the same as the k bits in d.

Example: (6, 3) systematic block code which can correct one bit error
Let G be given by:

G =





1 0 0 1 0 1
0 1 0 0 1 1
0 0 1 1 1 0





Encode the data bits d = [1, 1, 1].
Solution: c = [1, 1, 1, 0, 0, 0]

Example: Reception
You receive r = [1, 1, 1, 0, 0, 1], that is, what you received has an error in the last bit compared to
c (the coded bits that were sent through the channel). What was is the block decoder’s estimate
of the transmitted data?

Solution: At the receiver, multiply by the syndrome

S =











1 0 1
0 1 1
1 1 0
1 0 0
0 1 0
0 0 1
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Compute: rS = [0, 0, 1].
Look at all of the rows of the syndrome. The row number of the syndrome S that matches the

output rS, is the same as the number of the bit that was in error. If rS is all zeros, that indicates
that there were no errors. Since the sixth bit was in error, instead of [1, 1, 1, 0, 0, 1], we know the
correct coded bits were [1, 1, 1, 0, 0, 0].

Finally, because it is a systematic code, we know the first three bits are the data bits. The
receiver will just drop the last three bits.

Example: (7, 4) Block Code

1. Encode d = [0, 1, 1, 0] with the (7, 4) block code with generator,

G =







1 0 0 0 1 1 1
0 1 0 0 0 1 1
0 0 1 0 1 0 1
0 0 0 1 1 1 0







2. If r = [0, 1, 1, 0, 1, 1, 1] is received, and S is given as below, what would the receiver determine
to be the demodulated bits?

S =













1 1 1
0 1 1
1 0 1
1 1 0
1 0 0
0 1 0
0 0 1













3. If r = [0, 0, 0, 1, 1, 1, 0] is received, what would the receiver determine to be the demodulated
bits?

4. If r = [1, 0, 0, 1, 1, 1, 0] is received, what would the receiver determine to be the demodulated
bits?

5. If r = [1, 1, 0, 1, 1, 1, 0] is received, what would the receiver determine to be the demodulated
bits?

Solution: (1) I get c = [0, 1, 1, 0, 1, 1, 0]. (2) Then, multiplying [0, 1, 1, 0, 1, 1, 1]S, I get [0, 0, 1],
which is the same as the 7th row, which says that the last row was incorrectly received, and so
the 7th bit was incorrect. Thus the correct four bits sent were [0, 1, 1, 0]. (3) I get rS = [0, 0, 0]
which means no bits were received in error, so the four data bits sent were [0, 0, 0, 1]. (4) I get
rS = [1, 1, 1] which means that the first bit was received in error, so the four data bits sent were
[0, 0, 0, 1]. (5) I get rS = [1, 0, 0] which means that the receiver thinks the fifth bit was received in
error, so the receiver would guess the four data bits were [1, 1, 0, 1].

22.3 Performance and Costs

Using a (7,4) block code, we can correct a single error in the 7 bits. But we need to increase the
number of bits to send, which then requires more energy. So when using channel coding, we reduce
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the transmit power when comparing uncoded and coded transmissions. Still, the probability of
bit error goes down for equal Eb

N0
(dB). Equivalently, we can achieve the same bit error rate at 1

dB lower Eb
N0

. This value, 1 dB, is the coding gain. In our link budgets, coding goes in the Gains
column, added in with the antenna gains.

However, coding requires sending additional bits. So, in a coded system, there is always
a ratio of data bits to coded bits, r, called the code rate. In the (7,4) block code it is r =
4 data bits /7 coded bits. For a fixed bandwidth, this reduces the achievable data rate by r. For a
fixed data rate, it increases the bandwidth by a factor of 1/r.

23 Error Detection via CRC

Besides trying to correct the data, we can also simply try to detect the error. (One or both error
correction and error detection can be done.) If the check fails, we might request the data again.
For error detection, we have the following packet structure:

1. Header: Information about who the data is meant for, what purpose data is being sent, etc.

2. Payload: Data that we need to communicate. May be of various lengths.

3. Footer: Where the CRC is included. The CRC is always the same length, regardless of the
payload length.

The TX calculates the cyclic redundancy check (CRC) from the header and payload and puts it in
the footer. The RX then, once it has all of the header and footer, calculates the CRC based on the
received header and footer, and compares it to the one it received. If they match, the RX decides
the data was received correctly.

23.1 Generation of the CRC

A y-bit CRC is described by a y-order polynomial. The y refers to the maximum exponent in the
CRC polynomial. For example, a 1st order CRC is c(x) = x + 1. The data we want to send, d,
can also be described as a polynomial. For example d = [0, 1, 0, 1] corresponds to the polynomial
d(x) = 0x3 + 1x2 + 0x + 1x0 = x2 + 1. To determine the polynomial, just multiply the (row) bit
vector with the column vector [x3, x2, x1, 1]T , or, in general, for n-length data string, multiply by
[xn−1, xn, . . . , 1]T .

To find the CRC bit, we divide the two polynomials, d(x)÷ c(x) (modulo-2) and the CRC bit
is the remainder. So in fact the CRC is d(x) mod c(x). In this example, the CRC is zero.

Then, what we send through the channel is the desired bits appended by the CRC bit, in this
example, [0, 1, 0, 1, 0].

Example: CRC for 5 bit payload
Let d = [1, 1, 0, 1, 1]. What is the CRC bit for c(x) = x+ 1?
Solution: When dividing d(x) = x4 + x3 + x+ 1 by c(x) = x+ 1, you get a remainder of 0. So 0
should be appended.

For the 1-bit CRC check, there is also a much easier way – to determine the 1-bit CRC, just
check if the data (including CRC bit) has an even number of 1s. The one-bit CRC is also called
the parity check. Next, we consider a 4th order (four bit) CRC.
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Example: CRC calculation with a 4-bit CRC
Let c(x) = x4 + x+ 1. Let d(x) = x6 + x3 + x2 + x+ 1. Because the c(x) polynomial is 4th order,
there are four CRC bits. Calculate the CRC bits in this case.
Solution: The solution is [0, 0, 0, 1]. See my written solutions on the last page.

23.2 Performance and Costs

Using a CRC, we add a few additional bits to the packet, fewer than a FEC code would add. This
allows us to detect an error, but not correct it. However, it is often important to ensure that the
data received did not have any errors, beyond any reasonable doubt. For example, for cell phone
audio, it may be okay to make a bit error, and have it cause some temporary noise in the audio
signal; but when transferring a file, it may be critical not to have the file show up with incorrect
data, and not know that it was corrupted. A y-bit CRC will have a missed detection rate around
2−y.

Most systems use both an FEC and CRC to increase the energy efficiency (with the FEC) and
to make sure that received data is correct (with the CRC).

Lecture 16

Today: (1) Spread Spectrum

24 Spread Spectrum

“Spread spectrum” is the use of a much wider bandwidth than necessary in a radio communications
system, in order to achieve other objectives.

For example, frequency modulation (FM) historically was considered to be widely spread in
spectrum (broadcast FM radio uses 200 kHz to send audio, which is inherently a 3-10 kHz bandwidth
signal). However, FM was used because it could mitigate the effects of multipath fading, and could
achieve better signal quality at low SNR.

The two major types of spread spectrum modulation are:

1. Frequency Hopping Spread Spectrum (FH-SS)

2. Direct-Sequence Spread Spectrum (DS-SS)

Both types of SS use pseudo-random codes, periodic sequences of zeros and ones. These are not
actually random – a computer generates them using (deterministic) binary feedback logic. But,
an average person would look at the sequence and judge them to be random. So they are called
pseudo-random.

24.1 FH-SS

FH-SS pseudo-randomly changes center frequency each “hopping period”, Th. Bluetooth is a FH-SS
system, which achieves a (coded) bit rate of 1 Mbps (potentially up to 3 Mbps), but uses 80 MHz
of spectrum, in 79 different center frequencies, with a hopping period Th = 1/1600 s/hop. While at
each center frequency, the modulation is similar to things we have been talking about, e.g., FSK,
DPSK, QPSK, etc.
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Three benefits of FH-SS are:

1. Interference avoidance: There may be significant interference at a few of the center frequen-
cies. But even if we totally lose all bits during hops to those few frequencies, we will be able
to recover using the bits received during successful (non-interfered) hops. We also avoid being
an interferer to someone else’s signal for too long.

2. Multiple Access: Two devices can occupy the same spectrum and operate without coordinat-
ing medium access at all. Their transmissions will “collide” some small fraction of the time,
but (hopefully) not often enough to cause failure.

3. Stealth: There is an advantage to switching randomly among frequencies when an eavesdrop-
per doesn’t know your hopping pattern – they will not be able to easily follow your signal.
This was the original reason for the first use of FH-SS (it was discovered by actor and inventor
Hedy Lamarr, in 1940 [18] as a means for covert military communication. In the patent, she
describes FH-SS by analogy to piano playing).

24.2 DS-SS

We will see that DS-SS has the same three advantages as FH-SS, but for different reasons.
Direct-sequence spread spectrum simply uses a pulse shape that has a wide bandwidth. This

pulse shape is known as a pseudo-noise signal, which is, essentially, itself a BPSK-modulated signal,
but which “pseudo-random” data that is known to both transmitter and receiver.

Figure 29: Pseudo-noise (“Barker”) code used in 802.11b DS-SS modulation.

Figure 29 shows the PN signal used in 802.11b. Can you draw on top of Figure 29 what the
pulse shape would be if it were not DS-SS, and instead, simply modulated BPSK, with a SRRC
pulse shape? You can see that the bandwidth of the DS-SS signal will be very large compared to
that of the BPSK signal.

We can describe the modulated signal, sent by user k, as (from Rappaport):

sk(t) = ak(t)pk(t) cos(2πfct)

where ak(t) is the bit signal, +1 or -1, which indicates the data bits to be sent. For example, the
Barker code uses bits [+1, 1,+1,+1, 1,+1,+1,+1, 1, 1, 1]. As before, we have a pulse shape pk(t),
however, in this case, pk(t) is not simply a SRRC pulse. It is a high bandwidth pseudo-noise signal.
Essentially, pk(t) is a BPSK-modulated signal itself. The “bits” of the PN signal are called “chips”
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to distinguish them from bits. We denote the number of chips in pk(t) as PG, it is the number of
chips per bit. It is called PG because it is also called the processing gain. The period of each chip
is denoted Tc, so

PG =
Ts

Tc
=

Rc

Rs

Where Rc = 1/Tc is the chip rate. For example, 802.11b has a chip rate of 11 M (chips per second)
and a symbol rate of 1 M (symbols per second).

Note that the chips do not necessarily need to be the same each time. In IS-95 (also called
code-division multiple access (CDMA) by Qualcomm), the “short code” has PG = 215 = 32768.
There are not 32768 chips per bit, though – there are 64 chips per bit. The PN code generator just
provides a source of chips that are taken 64 at a time to produce the pulse shape for each data
symbol. In the IS-95 case, PG = 64.

Incidentally, also in IS-95 is a long code that has length 242 − 1. The long code is different for
every mobile. The output chips are xor-ed with the long code to make the signal hard to eavesdrop
and makes it unique to the particular mobile.

The bandwidth of a DS-SS symbol, when chips have the SRRC shape, is

B = (1 + α)Rc

Which is then PG times the bandwidth of the BPSK signal would have been as a narrowband
signal.

Recall that the SNR required to demodulate a signal is given by:

SNR =
Eb
N0

Rb

B

So with DS-SS, the SNR is lowered by a factor of PG

SNR =
Eb
N0

Rb

(1 + α)Rc
=

Eb
N0

1

(1 + α)PG

However, If you thought this signal was just a plain-old BPSK signal, i.e., didn’t know the PN
signal, you’d need the regular SNR Eb

N0

1
1+α , which is PG times higher. This makes us understand

advantage #3 of DS-SS: Stealth. Knowing the PN signal allows one to demodulate the signal with
PG times less SNR than an eavesdropper could. If the PG is high enough, the signal would be
extremely difficult to detect at all, but could still be used by the intended receiver.

Advantage #1: Reception of DS-SS uses the same principle as discussed earlier – the received
signal is correlated with the known PN signal. What if a narrowband interference signal was also in
the received signal? Well, this narrowband signal would effectively be spread, when it is multiplied
by the PN signal in the receiver. In contrast, the desired signal is de-spread (becomes narrowband
again) due to correlation with the PN signal. The spread interference can then be partially filtered
out using a narrowband filter. See Figure 6.50 in Rappaport (page 333).

Advantage #2: Further, DS-SS can be designed for some particular benefits for multiple access.
These relate to the near-orthogonality of the particular PN codes used in DS-SS. In short, some sets
of PN signals are nearly orthogonal or completely orthogonal to each other ; and some PN signals
have the property that the PN signal is orthogonal to itself at a different time delay. This is where
the term, code-division multiple access (CDMA) comes from.

First, consider sets of PN signals orthogonal to each other. One example is the set of Gold
codes (used in the GPS network). Gold code signals are nearly orthogonal with each other.
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Another example is the Walsh-Hadamard (WH) sequence set, used in IS-95 (CDMA). The WH-
64 sequences, shown in Figure 30(c), are used in IS-95. The 64 WH signals are exactly orthogonal
to each other. These signals provide a means on the downlink to send 64 simultaneous user signals,
and yet have each mobile perform a correlation operation that completely zeros out the signal sent
from the BS to all 63 other mobiles. When one mobile correlates with its signal, pk(t), it has zero
correlation with the other 63 WH signals.

(a) (b)

(c)

Figure 30: Walsh Hadamard sequences are in the rows of the above images. The signal is +1
during black squares, and -1 during red squares: (a) two WH-2 sequences in two rows, (b) four
WH-4 sequences in four rows, and (c) sixty-four WH-64 sequences in 64 rows.

Note that WH sequences are not used on the uplink, because they are only orthogonal if time-
synchronized. Mobiles aren’t able to time-synchronize with each other very well.

Second, consider the autocorrelation of a PN signal (the correlation of a signal with itself at
different time delays). The autocorrelation is defined as

Rp(τ) =

∫ Ts

0
ak(t)pk(t)pk(t− τ)dt

First assume that the data signal ak(t) = 1. If τ = 0, the value of Rp(τ) is simply the energy in the
PN signal pk(t) over a duration Ts. For τ a multiple of Ts, that is, the period of pk(t), we get the
same value, i.e., Rp(nTs) = Rp(0). For in between values of τ , (say, Tc < τ < Ts − Tc, PN signals
have a nearly (but not quite) zero autocorrelation. Generally, for these τ , Rp(τ) ≈ −Rp(0)/PG.
Figure 32(top plot) shows an example for the Barker code used in 802.11b.

Now, if the data was modulated, the exact −Rp(0)/PG is gone, but we still do have |Rp(τ)| ≤
Rp(0)/PG. Notice that the autocorrelation becomes strongly negative when the bit sent was a -1.

24.3 PN code generation

PN code sequences are generated by binary logic gates called “linear feedback shift registers”
(LFSR). A properly designed k-state LFSR produces a 2k − 1 length PN code sequence. Figure
32(a) and (b) show 4 and 5 state LFSRs. Each state of s1, . . . , sk is either zero or one. Note that
we should never have all zero states. Assume that we start out with states that are not all zero.
Then, at each time, we compute the mod-2 addition specified, and the output of the adder goes
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Figure 31: Autocorrelation of “Barker” code used in 802.11b DS-SS modulation, (a) with all symbol
values = +1, that is, ak(t) = 1, and (b) with data modulation.

into s1 in the next time step. Similarly, we shift states, so that state si always takes the value that
state si−1 had in the previous time step. The output is always drawn from sk, the rightmost state.

Example: 4-state LFSR
Calculate the first 6 outputs of the LFSR given that the initial states [s1, s2, s3, s4] are [0, 1, 0, 1].
Solution:

Step s1 s2 s3 s4 Output

0 0 1 0 1 n/a
1 1 0 1 0 1
2 1 1 0 1 0
3 0 1 1 0 1
4 0 0 1 1 0
5 1 0 0 1 1
6 0 1 0 0 1
7 0 0 1 0 0
8 0 0 0 1 0
9 1 0 0 0 1
10 1 1 0 0 0
11 1 1 1 0 0
12 1 1 1 1 0
13 0 1 1 1 1
14 1 0 1 1 1
15 0 1 0 1 1

Lecture 17

Today: (1) Medium Access Intro, (2) Packet Radio, (3) 802.11 MAC
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(a)
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Figure 32: Linear feedback shift register (LFSR) generation of an (a) 4-stage, or (b) 5-stage,
maximal-length PN code; and (c) the generated code sequence for the 4-stage LFSR.
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25 Medium Access Control

In this lecture, we describe some of the ways in which wireless networks can accommodate many
users at the same time, even on the same channel. This is called medium access control (MAC).
It is also called multiple access control, because we are designing a protocol for multiple users to
share one channel (the “medium”). We have talked about multiple access throughout this semester
already

• Frequency-division multiple access (FDMA): we have used distinct frequency channels to
allow many users in a cellular communication system.

• Time-division multiple access (TDMA): users of the same frequency channel are assigned
different “slots” in time.

• Space-division multiple access (SDMA): because of the cellular concept, we can assign users
separated in space (in different cells or sectors) the same channel and still ensure that they
do not interfere with each other.

• Code-division multiple access (CDMA): We can assign users distinct code channels, that is,
have them use orthogonal pulse shapes that allow them, at the receiver, to be separated from
any other user’s signal on a different code channel.

In this lecture, we will talk specifically about a variation of TDMA called “packet radio”. Packet
radio allows multiple users to use a shared channel sometimes to send a “packet” of data. Compared
to cellular TDMA, we are now talking about data communications systems which only sometimes
need to send data. If we were to reserve each user a regular slot (like TDMA does), most of the
time this slot would go unused. By having users send data only when they need to, we hope to
have a more efficient use of this shared channel.

This lecture is about control of medium access, i.e., MAC. What can control of the channel do
for the efficiency of packet radio? What are some of the problems experienced in MAC protocols?

We will in this lecture:

• Learn how aloha and slotted aloha packet radio networks work, and their capacities.

• Learn what the “hidden terminal problem” is.

• Learn how 802.11 networks schedule traffic, and their capacities.

The first topic motivates the problem with packet radio, which then motivates why it can be more
efficient to employ scheduling in a MAC protocol.

1. Some control: An 802.11 (WiFi) access point also exercises control over the users that com-
municate with it. But it has no control over where in space the next access point is that is
also using the same channel. So problems ensue.

2. No control: Some wireless network protocols do not attempt to exercise control over when
users offer traffic to the channel. In these cases, when two users transmit at the same time,
their signals collide and can both be lost (i.e., not recoverable at the intended receiver).
Actually, depending on the signal to interference ratio (SIR), a signal may be able to be
received despite the fact that another interfering signal overlaps with it. Further, as we saw
in the spread spectrum lecture, some modulation methods make it easier to recover the desired
signal when it overlaps with other interfering signals.
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26 Packet Radio

Let’s first discuss the reading [1]. I assign this reading because Dr. Abramson and the University
of Hawaii addressed the design of a data communication system from scratch, like you are assigned
to do for the semester design project. They did this 40 years ago, but we still use the analysis that
they did in wireless networking systems today, because they did such a good job of presenting the
fundamental tradeoffs in the design of packet radio systems.

The problem that Dr. Abramson had was that the University of Hawaii wanted to connect
its campuses on different islands to a central server (called the “menehune” in the paper), which
itself was connected to the ARPANET. However using telephone line connections just was such
an inefficient and expensive method to do so. Essentially, it was expensive to reserve a dedicated
telephone channel for each computer terminal in the Hawaii system. It ended up being much
cheaper to use radio communication, on a single channel with a higher bit rate (24 kbps!).

26.1 Aloha

This protocol is called “aloha” after the Hawaiian word. In this single channel, each terminal,
when it had data, would just transmit a fixed duration (τ -length in time) “packet” of data. If two
terminals happened to send packets that overlapped in time, you might have them collide and get
neither packet, but that if this happened, both terminals would just retransmit later. There is a
reverse channel on which the receiver acknowledged any packet from any sender that was (correctly)
received. This positive acknowledgement is abbreviated as “ACK”.

Let the average number of data packets per second (from all senders) be r. Again, τ is the
duration of a packet. Then the average total utilization of the channel is rτ . A utilization of rτ = 1
would be perfect utilization. The result of [1] is that the utilization of the channel is,
at most, 18.4%. At a higher r (and thus utilization), the number of collisions increases faster
in a way that reduces the rate of successfully received packets. This maximum utilization is also
referred to as the capacity of an aloha packet radio system.

Note that in this protocol, the receiver exercises very little control. It is the senders who decide
when to transmit.

We also have a formula for the maximum number of active terminals (or users) sending packets
to the server. This maximum is kmax,

kmax =
1

2eλτ
where e is the base of the natural logarithm, λ is the average rate at which each terminal sends
packets to the server (in packets per second), and τ is the packet duration. Note that we use “active
terminals” to describe terminals that send packets right now at the average rate of λ per second.
There might be other “inactive terminals” which are not sending packets at all at this time.

26.2 Slotted Aloha

Abramson also studied a variation of the aloha system in which terminals were synchronized and
could agree on non-overlapping “slots”, that is, times during which packets could be transmitted
[2]. That is, rather than transmitting at just any time, a terminal would wait for the next slot’s
start time. By having all packets transmitted starting at the slot start time, there will be fewer
collisions. Abramson showed that this simple modification allows the maximum utilization to
double, to 36.8%. The maximum number of active terminals becomes kmax = 1

eλτ , also double the
result for regular aloha.
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The only problem is that, now, each terminal must be synchronized to a clock. This may be
easy or difficult depending on the synchronization requirements.

Slotted aloha is slightly more controlled, in the sense that each terminal must be synced to the
same clock, and must start transmitting only at the start of a slot.

Example: How many active users could you support?
How many active users could you support on a 1 MHz channel using a packet radio system? Take,
in this example, a QPSK system with SRRC pulse shaping with α = 0.5. For this example, use
the same packet rate and duration used in the original aloha system – 704 bits per packet, and a
packet generation rate of 1 per minute. Calculate both for aloha and slotted aloha.
Solution: The bit rate is 1 MHz (log2 4)/(1 + 0.5) = 1.333 MHz. For 704 bits, this would take a
duration of 0.53 ms. Using aloha,

kmax =
1

2eλτ
=

60

2e(0.0021)
≈ 20.9 × 103

For slotted aloha, the max number of users would double to 41.8× 103.

27 CSMA-CA

27.1 Carrier Sensing

One more simple idea in packet radio is carrier sensing. Carrier sensing refers to a transceiver’s use
of its receiver to sense whether or not there is currently another packet being transmitted on the
channel, i.e., “if the channel is busy”, before transmitting its own packet. If it detects transmission,
it will wait until the transmission is completed, until starting its own transmission. This is called
“carrier sense multiple access” (CSMA).

A minor modification of CSMA is called CSMA-collision avoidance, or CSMA-CA. This means
that, when a CSMA transceiver detects the channel to be busy, rather than just waiting for the
other transmission to be completed, it also waits a random time interval before trying to retransmit.

27.2 Hidden Terminal Problem

What is a problem of relying on one terminal to know when the channel is busy? Since signal
power is spatially varying, one terminal may be transmitting to the server successfully, even while a
second terminal at a third location is not able to hear that the channel is busy, as shown in Figure
33.

The hidden terminal problem is ubiquitous in packet radio networks. This makes carrier sensing
systems less useful than you would otherwise imagine.

27.3 802.11 DCF

Our 802.11 networks operate using a basic CSMA-CA protocol which is named the “distributed
control function” (DCF). They use CSMA-CA, and when a collision occurs, for collision avoidance,
a terminal waits a random amount of time in a procedure called exponential backoff.

This material supplements and draws heavily from [5].
The job of a terminal’s transmitter is to send its packets. When it has a packet to send, it:
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TX RX CR

Figure 33: Terminal TX is transmitting to server RX. Terminal CR cannot hear TX’s signal, so
even if it uses carrier sensing, when it has data to send, it would transmit and cause interference
at terminal CR.

1. Listens to the channel for a duration of DIFS (a constant time window called the distributed
interframe space).

2. After the channel is sensed to be free for a duration of DIFS (by the receiver), the transmitter
picks a random backoff delay X, which is an integer, picked as follows. X is chosen randomly
and uniformly from the range 0 to 2iCWmin − 1 for some integer i called the backoff stage
and some minimum window length CWmin. This backoff stage i is initially set to zero. So
initially, when a collision occurs, the transmitter picks this random integer X between 0 and
CWmin − 1.

3. If X = 0, the terminal immediately transmits.

4. If not, it continues sensing. After σ period of time (called the slot time) with the channel
unoccupied, the receiver decrementsX by one. Note that if the receiver hears another terminal
transmit, it waits a period DIFS after the end of the transmission, and then waits σ and
decrements X by one.

5. The terminal goes back to step 3.

After the transmitter sends its packet, its receiver checks for the ACK from the access point
within ACK Timeout (another constant period of time):

1. If it does not receive the ACK within the specified time window, it assumes that the packet
collided and was lost. In this case, it increments the backoff stage i (up to a maximum of m),
and starts the procedure to transmit the packet again.

2. If it does receive the ACK, it resets the backoff stage i to zero, and then starts the procedure
to transmit the next packet (assuming there is another one).

Because there are so many acronyms, here is a table of the most important:

• ACK: positive acknowledgement

• CSMA/CA: carrier sense multiple access with collision avoidance

• DCF: distributed coordination function: the algorithm in 802.11 which is the main subject
of this paper

• DIFS: distributed interframe space: how long a terminal measures the channel before deter-
mining it is idle
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• MAC: medium access control

• SIFS: short inter-frame space: delay between end of reception and transmission of ACK

Notation:

• σ: slot time size (time needed for any terminal to detect a transmission)

• CWmin: minimum size of the contention window

• n: number of “contending terminals”, i.e., those offering packet traffic to the network.

• i: backoff stage, in the range {0, . . . ,m}

• m: maximum backoff stage (CWmax = 2mW )

27.4 In-Class DCF Demo

This activity recreates a few milliseconds in the life of a 802.11 network running the DCF. For our
exercise, let:

• W = 4, m = 2. Thus the maximum contention window is length 16.

• Let σ = 1, DIFS = 3, SIFS = 1.

• packet duration P = 20, ACK duration = 3.

• n = 3: terminals A, B, and C. All terminals can hear the access point. First assume that all
terminals can hear each other, then assume that terminal A cannot hear terminal C, and vice
versa.

• ACKT imeout = 24.

Each person will “act out” a terminal TX or RX, or access point TX or RX. Other “actors”
include the random number generator (the person who selects random numbers from 0 to 2iCWmin−
1), and the “time counter” who moves time to the next multiple of σ when the actors are ready.

The exercise starts by the random number generator presenting a random number in {0, . . . , CWmin}
to each of the terminal transmitters to use as their backoff counter. Terminals are all in backoff
stage 0 at the start.

Each terminal comprises a transmitter and receiver. The transmitter’s job is to decrement the
backoff counter whenever the receiver allows it to do so, and then transmit a packet whenever
the backoff counter hits zero. The receiver’s job is to sense the channel (and thus stop the back-
off counter from whenever a packet is transmitted until DIFS after the ACK is finished). After
transmitting a packet, or a collision, the transmitter requests a random number (ask the random
number generator to pick a number out of a hat according to the backoff stage). The receiver’s job
is also to make sure that an ACK is received within ACKT imeout of the start of the transmitter
sending a packet. If it is not, increment the backoff stage (up to the maximum stage m) and tell
the transmitter to request a new random number for the backoff counter.

The access point receiver’s job is to listen for each packet; then SIFS after the end of a packet,
the access point transmitter sends an ACK. Unless, of course, two packets were transmitted at the
same time, in which case, neither packet is received and an ACK is not transmitted.



ECE 5325/6325 Fall 2011 84

Whenever your terminal or access point transmits a packet, the transmitter actor will hold
up card letting the other players know that he or she is occupying the medium. For the hidden
terminal simulation, terminal A should ignore terminal C, and vice versa.

Important questions:

1. How efficient is the 802.11 DCF when there is no hidden terminal problem? The paper
eventually shows that a utilization rate of just above 80% is possible in this case.

2. How significant is the hidden node problem in the 802.11 DCF?

27.5 RTS/CTS

To help deal with the hidden terminal problem, a MAC protocol named request-to-send/clear-to-
send or RTS/CTS is used. In short, a terminal doesn’t just send its data — instead, it sends a very
short packet with its id and an indication that it wants to send a data packet of a given duration.
The destination schedules a reserved time for that transmission, and other terminals in range of
the destination terminal must not transmit during that reserved time. After successful reception,
the destination also sends a final ACK to acknowledge receipt.

Lecture 18

Today: Diversity: (1) Types, (2) Combining

28 Diversity

Diversity is the use of multiple channels to increase the signal to noise ratio in the presence of
random fading losses. The big picture idea of diversity is “don’t put all of your eggs in one basket”.

For fading channels, we know that there is a finite probability that a signal power will fall
below any given fade margin. For a Rayleigh channel, we showed that to have the signal above the
required SNR 99% of the time, we needed to include a fade margin of 18.9 dB. This is a big “loss”
in our link budget. For example, if we didn’t need to include the fade margin in the link budget, we
could multiply the path length by a factor of 1018.9/20 ≈ 10 (in free space); or increase the number
of bits per symbol in the modulation significantly higher so that we can achieve higher bit rate for
the same bandwidth.

There are several physical means to achieve multiple channels, and to get the received power
on those channels to be nearly independent. Each has its advantages and disadvantages.

After this lecture, you should have three critical skills:

1. Understand what is meant by space, polarization, frequency, multipath, and time diversity,
and the benefits and drawbacks of implementing each diversity method in a wireless commu-
nications system.

2. Understand how to combine the signals from multiple channels, including scanning, selection,
equal gain, and maximal ratio combining methods.

3. Know the effect on system design: Be able to calculate the probability of outage or required
fade margin when using a particular diversity combining scheme, assuming Rayleigh fading.
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28.1 Methods for Channel Diversity

28.1.1 Space Diversity

Space diversity at a receiver is the use of multiple antennas across space. Because multipath
fading changes quickly over space (see lecture notes on fading rate, and Doppler fading), the signal
amplitude on the antennas can have a low correlation. The low correlation typically comes at
separation distances of more than half the wavelength. The Jakes model (equal power from all
angles) says that the correlation coefficient at λ/2 is exactly zero; however, in reality, this is not
true. The actual angular power profile (multipath power vs. angle) determines the actual correlation
coefficient. In general, we either accept that the correlation coefficient is not perfectly zero, or we
separate the antennas further than λ/2. Or, add some gain pattern diversity, i.e., using different
gain patterns to help decorrelate the signals.

The problems with space diversity are most importantly that for consumer radios, we want
them to be small; and multiple antennas means that the device will be larger. This is fine when
space is not a big concern – for base stations, or for laptops or even access points. Another problem
is (except for scanning combining, see below) that a receiver with multiple antennas must have one
RF chain (downconverter, LNA, filter) per antenna. The benefits of space diversity are that no
additional signal needs to be transmitted, and no additional bandwidth is required.

Space diversity could be used at a transmitter, by changing the transmit antenna until the
receiver SNR is high enough. In the past, this requires some closed loop control, and so was
less common. MIMO has changed that. We will cover MIMO in lecture 19, including showing
how Alamouti coding can be used to use the multiple antennas at a transmitter to achieve space
diversity.

28.1.2 Polarization Diversity

Polarization diversity is the use of two antennas with different polarizations. We know that reflection
coefficients are different for horizontal and vertically polarized components of the signal. Scattered
and diffracted signal amplitudes and phases also are different for opposite polarizations. Thus we
can consider one polarized signal, which is the sum of the amplitudes and phases of many reflected,
scattered, and diffracted signals, to be nearly uncorrelated with the other polarized signal.

The advantages of polarization diversity is that the two antennas don’t need to be spaced λ/2
apart. It may be combined with space diversity so to further reduce the correlation coefficient
between the signal received at two antennas. Polarization diversity, like space diversity, doesn’t
require any additional bandwidth or signal transmission from the transmitter.

The disadvantages are simply that there can be only two channels – vertical and horizontal
(or equivalently, right-hand and left-hand circular) polarizations. It may require two receiver RF
chains (again, unless a scanning combiner is used).

28.1.3 Frequency Diversity

Frequency diversity uses multiple transmissions in different frequency bands. This doesn’t typically
mean transmitting exactly the same thing on multiple different bands (which would require multiple
times more bandwidth!). Frequency division multiplexing (FDM) or orthogonal FDM (OFDM) are
the typical examples, which divide the data into N different bands. Error correction coding is used
so that some percent of errors can be corrected, so if a certain percent of the bands experience
deep fades, and all of that data is lost, the data can still be recovered during decoding. Frequency



ECE 5325/6325 Fall 2011 86

bands in FDM or OFDM are typically correlated – each band needs to be in frequency flat fading
so that equalization does not need to be used – but this means that bands right next to each other
still have significant positive fading correlation.

FH-SS is another frequency diversity example. FH-SS may experience deep fades (and inter-
ference) on some center frequencies among its hopping set, but it is unlikely to lose more than a
percentage of its data. It also uses error correction coding.

Frequency diversity methods can also be set to control which frequency bands/ channels the
transmitter uses, to remove the bands that are in deep fades. Again, this requires closed loop
control.

Advantages of frequency diversity are that only one antenna, and one RF chain, is needed. A
disadvantage is that, because some of the transmit power is used to send data in bands that are in
deep fades, the power efficiency is less compared to space diversity, in which the transmitter sends
all of its power in one channel.

28.1.4 Multipath diversity

Multipath diversity is the capturing of multipath signals into independent channels. In DS-SS, a
rake receiver achieves multipath diversity by isolating multipath components separately from each
other based on their differing time delays. If one time delay group fades, another time delay group
may not fade. These “fingers” of the rake receiver do not require different RF chains (an advantage
compared to space diversity) and benefit most when the multipath channel is the worst, for example,
in urban areas, or in mountain canyons. The disadvantage of DS-SS is the large frequency band
required – for example, 20 MHz for 802.11b, or 1.25 MHz for IS-95 (cellular CDMA). There is also
significant computational complexity in the receiver, although standard ICs now exist to do this
computation for these common commercial devices.

The Rappaport book calls this “time diversity”, but I think it is confusing – perhaps “multipath
diversity” or even “multipath time delay diversity” are better names.

28.1.5 Time Diversity

Time diversity is the use of a changing channel (due to motion of the TX or RX) at different
times (µs or ms). For example, one might send the same data at multiple different times, but
this would require multiple times the transmit power, and reduce the data rate possible on one
channel. This incurs additional latency (delay). Packet retransmissions (e.g., TCP) can be viewed
as time diversity. However, it is used in almost all common commercial systems in the form
of “interleaving”. Interleaving takes an incoming coded bitstream and spreads the bits across a
transmitted packet in a known pattern. An example interleaver used by a transmitter is shown in
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Figure 7.17 in the Rappaport book. In the receiver, the inverse interleaving operation is performed.
This way, a burst of (multiple sequential) coded bit errors caused by the channel are spread across
the packet by the interleaver. Error correction codes are more effective when errors are not grouped
together (recall our block coding and decoding – we assumed at most one error per 6 or 7 received
coded bits). In general, coding methods correct a few out of each group of coded bits received, but
not more.

Interleaving’s only disadvantage is additional latency – you need to receive the entire block of
coded bits before they can be put in order and decoded (and then converted into an audio signal,
for example). For different applications, latency requirements are different. Voice communications
are typically the most latency-sensitive, and even cell phone voice data is interleaved.

The disadvantage is that temporal correlation can be very long for most applications, even for
vehicular communications.

28.2 Diversity Combining

In the previous section, we described how we might achieve M different (nearly) independent
channels. In this section, we discuss what to do with those independent signals once we get
them. These are called combining methods. We need them for space, polarization, and multipath
diversity methods. For frequency diversity (FDM and OFDM) combining is done by the FDM or
OFDM receiver using all frequency band signals. For time diversity (interleaving) we described
the combining above. We only want one bitstream, so somehow we need to combine the channels’
signals together. Here are some options, in order of complexity:

1. Scanning Combiner : Scan among the channels, changing when the current SNR goes below
the threshold.

2. Selection Combiner : Select the maximum SNR channel’s signal and use only it.

3. Equal Gain Combiner : Co-phase the signals and then add them together.

4. Maximal Ratio Combiner : The optimal solution in terms of SNR – co-phase and weight
(multiply) each signal by the square root of its signal to noise ratio (SNR), and then add
them together.

“Co-phase the signals” means that we need to multiply signals by ejφi for some constant phase angle
φi on channel i, so that the (otherwise random) phases of the signals on the different channels line
up. If we don’t co-phase the signals before combining them, we end up with the same multipath
fading problem we’ve always had - signals sometimes add together destructively. You should be
prepared to describe any of these combining methods, and discuss its effect on the fade margin
required for a link.

28.2.1 Selection Combining

Let’s say that we have M statistically independent channels. This independence means that one
channel’s fading does not influence, or is not correlated in any way with, another channel’s fading.

Let’s assume that each channel is Rayleigh with identical mean SNR Γ. At any given instant,
the SNR on channel i is denoted γi. Based on the Rayleigh assumption for γi, it has a CDF of:

P [γi ≤ γ] = 1− e−γ/Γ
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Figure 34: Rappaport Figure 7.11, the impact of selection combining.

This means that the probability that the SNR on channel i is less than the threshold γ is given by
1 − e−γ/Γ, where again, Γ is the mean SNR for the channel. In past lectures, we showed that we
can determine a fade margin for a single channel (M = 1) based on this equation. For example,
setting the probability of being less than the threshold to 1%,

0.01 = 1− e−γ/Γ

0.99 = e−γ/Γ

γ = Γ(− ln 0.99) = Γ(0.0101) = Γ(dB)− 19.98(dB)

(45)

Thus compared to the mean SNR on the link, we need an additional 20 dB of fade margin (this is
slightly less when we use the median SNR).

In contrast, in selection combining, we only fail to achieve the threshold SNR when all channels
are below the threshold SNR. Put in another way, if any of the channels achieve good enough SNR,
we’ll select that one, and then our SNR after the combiner will be good enough. What is the
probability all of the M channels will fail to achieve the threshold SNR γ? All M channels have to
have SNR below γ. The probability is the product of each one:

P [γi < γ, ∀i = 1, . . . ,M ] =
[

1− e−γ/Γ
]

· · ·
[

1− e−γ/Γ
]

=
[

1− e−γ/Γ
]M

Example: What is the required fade margin when assuming Rayleigh fading and M = 2
independent channels, for a 99% probability of being above the receiver threshold?
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Again, set 0.01 equal, this time, to
[
1− e−γ/Γ

]2
, so

0.1 = 1− e−γ/Γ

0.9 = e−γ/Γ

γ = Γ(− ln 0.9) = Γ(0.1054) = Γ(dB)− 9.77(dB)

(46)

So the fade margin has gone down to less than 10 dB, a reduction in fade margin of 10 dB!
AsM increases beyond 2, you will see diminishing returns. For example, forM = 3, the required

fade margin improves to 6.15 dB, a reduction of 3.6 dB, which isn’t as great as the reduction in
fade margin due to changing M from 1 to 2.

28.2.2 Scanning Combining

Selection combining assumes we know all signal amplitudes so that we can take the maximum.
Scanning combining is a simplification which says that we only have one receiver, so we can only
know the signal to noise ratio on one channel at a time. But we can switch between them when
one channel’s SNR drops too low. We can often achieve nearly the same results using a scanning
combiner as with selection combining.

28.2.3 Equal Gain Combining

Here, we simply co-phase the signals and then add them together. The outage probability improves
compared to selection combining. Denoting the SNR of the summed signal as γΣ, an analytical
expression for the outage probability given Rayleigh fading is [11, p. 216],

P [γΣ < γ] = 1− e−2γ/Γ −
√

πγ/Γe−γ/Γ
(

1− 2Q
(√

2γ/Γ
))

where Q (·) is the tail probability of a zero-mean unit-variance Gaussian random variable, as we’ve
used before to discuss bit error probabilities of modulations.

28.2.4 Maximal Ratio Combining

For maximal ratio combining, we still co-phase the signals. But then, we weight the signals accord-
ing to their SNR. The intuition is that some channels are more reliable than others, so we should
“listen” to their signal more than others – just like if you hear something from multiple friends, you
probably will not weight each friend equally, because you know who is more reliable than others.

The outage probability improves compared to equal gain combining. Denoting the SNR of the
summed signal as γΣ, an analytical expression for the outage probability given Rayleigh fading is
[11, p. 214],

P [γΣ < γ] = 1− e−γ/Γ
M∑

k=1

(γ/Γ)k−1

(k − 1)!
.

Lecture 19

Today: (1) Capacity, (2) MIMO
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Figure 35: Goldsmith Figure 7.5, the impact of maximal ratio combining.

29 Shannon-Hartley Bandwidth Efficiency

Ralph V. L. Hartley1 worked as a researcher in radio telephony for the Western Electric Company,
and later, at Bell Laboratories, where he developed relationships useful for determining the capacity
of band-limited communication channels published in 1928 [13]. Claude Shannon, known as ”the
father of information theory”, worked at Bell Labs starting in 1940. In addition to his work on
cryptography, Shannon extended the result of Hartley to provide a unifying approach to finding
the capacity of digital communications systems in “A mathematical theory of communications” in
1948 [23]. Shannon’s result provides a fundamental relationship between bandwidth, B, error-free
bit rate, Rb, and signal to noise ratio, S/N [23]:

Rb ≤ C = B log2

(

1 +
S

N

)

(47)

We can use this Shannon-Hartley bound to develop a bound on the bandwidth efficiency.

Def’n: Bandwidth efficiency
The bandwidth efficiency of a digital communication system is ratio of ηB = Rb/B, where Rb is
the bits per second achieved on the link, and B is the signal bandwidth occupied by the signal.
Bandwidth efficiency has units of bits per second per Hertz.

The limit on bandwidth efficiency is a direct result of the Shannon-Hartley capacity formula,

1Hartley received the A.B. degree from the University of Utah in 1909
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and is given by,

Rb

B
≤ log2

(

1 +
S

N

)

Rb

B
≤ log2

(

1 +
Rb

B

Eb
N0

)

(48)

Note that this latter expression can’t be solved for Rb
B directly – one needs to find a plot of the

Rb
B possible for any given Eb

N0
. I have done this using Matlab’s “fsolve” function, and a plot of the

result is in Figure 36.
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Figure 36: The maximum bandwidth efficiency, in bits per second per Hertz, vs. Eb
N0

in dB. This
graph is the solution to (47).

Example: Maximum for various Eb
N0

(dB)

What is the maximum bandwidth efficiency of a link with Eb
N0

(dB) = 10, 15, 20? What maximum
bit rate can be achieved per 30 kHz of spectrum (one AMPS/USDC channel)? Is this enough for
3G?
Solution: Using Figure 36, the Rmax

B ≤ 6, 8, and 10 bps/Hz. for Eb
N0

(dB) = 10, 15, 20. With 30
kHz, multiplying, we have Rb ≤ 180, 240, 300 kbps. No, this isn’t enough for 3G cellular, which is
supposed to achieve up to 14 Mbps.

Shannon’s bound is great as engineers, we can come up with a quick answer for what we cannot
do. But it doesn’t necessarily tell us what we can achieve. Our probability of bit error equations
for particular modulation types is the opposite – it gives us achievable bit error rates, but no idea
on whether one can do better for the particular Eb

N0
we have on the link.

Note that achieving (approximately) linear improvements in bps/Hz requires linear increases in
dB energy. That is, in the example above, one needs to add 5 dB into the link budget for every
extra 2 bps/Hz we need. This (5 dB increase) translates to multiplying the linear transmit power
by 3.2 each time we want 2 bps/Hz more.
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It is very difficult to increase bit rate to handle the exponentially increasing demand from users
simply by increasing power. MIMO is a solution to this limitation – by adding additional channels,
via multiple antennas at a transceiver, we can multiply the achievable bandwidth efficiency.

30 MIMO

Multiple-input multiple output (MIMO) is a particular type of space and/or polarization diversity
in which both the transmitter and receiver may use multiple antennas.

Figure 37: Transmit and receive space diversity schemes: (a) traditional space diversity with
receiver combining, called single input multiple output (SIMO); (b) transmit diversity, which may
use Alamouti’s scheme, called multiple input single output (MISO); (c) 2×2 multiple input multiple
output (MIMO).

30.1 Revisit Maximal Ratio Combining

We’re going to introduce MIMO by comparing it to maximal ratio combining (MRC) using a receiver
with two antennas (space diversity), as shown in Figure 37(a). Let’s assume that the transmitter
sends symbol voltage s. Assume the channel from TX to RX antenna 0 experiences total channel
power gain α2

0 (or voltage gain α0), and the channel from TX to RX antenna 1 experiences total
channel power gain α2

1 (or voltage gain α1).
We said that in MRC, the received signals r0 and r1 are multiplied by the square root of the

SNRs. Multiplying received signals by a constant doesn’t help (it amplifies the noise as much as
the signal) so it really matters to multiply them by different numbers. Here, those numbers turn
out to be α0 and α1.

rMRC = α0r0 + α1r1

If the transmitted symbol voltage was s, then because the channel voltage gains were α0 and
α1, we must have that r0 =

√
Ptα0s + n0 and r1 =

√
Ptα1s + n1, where n0, n1 are the additive

noise introduced by the channel. (There would have been phase shifts as well, but remember that
co-phasing is done prior to MRC.) So,

rMRC =
√

Pt

[
α2
0 + α2

1

]
s+ α0n0 + α1n1

In the case when we had only one receive antenna, we would have received either r1 or r0. In
comparison, the noise terms are multiplied by α0 or α1, but the signal is multiplied by the sum of
α2
0 + α2

1. If one αi fades, we don’t lose the entire signal s.
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30.2 Alamouti code

The MIMO started gaining steam in 1998, from two different results, one from Bell Labs, where
they had built an experimental MIMO system they called V-BLAST [28], and a simple transmit
diversity scheme from S. M. Alamouti now called the Alamouti scheme [3]. The Alamouti scheme
is a simple way to achieve a performance similar to MRC using 2×1 MISO (two transmit antennas
and a single receiver), like the system shown in Figure 37(b). The advantage is that in some cases,
the transmitter is more able to have multiple antennas, while the receiver is more limited in size
(for example, cellular communications on the downlink).

Alamouti presented a simple scheme that sends two symbols simultaneously, but takes two
symbol periods to do so, and over the two transmit antennas. Denote these two symbols s0 and s1.
The idea is, first transmit s0 out of antenna 0 and s1 out of antenna 1. At the receiver, assuming
the channels are h0 = α0e

jθ0 and h1α1e
jθ1 , will be

r0 = s0α0e
jθ0 + s1α1e

jθ1 (49)

Then, during the subsequent symbol period, send −s∗1 out of antenna 0 and s∗0 out of antenna 1,
where the superscript ∗ is used to denote complex conjugate. During the second symbol period the
receiver will see

r1 = −s∗1α0e
jθ0 + s∗0α1e

jθ1 (50)

Note this assumes the channel was the same during the second symbol period as during the first.
The “magic” happens when we combine r0 and r1 in the following way to come up with estimates

of s0 and s1. We form:

s̃0 = h∗0r0 + h1r
∗
1

s̃1 = h∗1r0 − h0r
∗
1

Plugging in for h0 and h1,

s̃0 = α0e
−jθ0r0 + α1e

jθ1r∗1
s̃1 = α1e

−jθ1r0 − α0e
jθ0r∗1

Plugging in for r0 and r1 as given in (49) and (50), respectively,

s̃0 = α0e
−jθ0(s0α0e

jθ0 + s1α1e
jθ1) + α1e

jθ1(−s1α0e
−jθ0 + s0α1e

−jθ1)

s̃1 = α1e
−jθ1(s0α0e

jθ0 + s1α1e
jθ1)− α0e

jθ0(−s1α0e
−jθ0 + s0α1e

−jθ1)

Simplifying,

s̃0 = α2
0s0 + s1α0α1e

j(θ1−θ0) − s1α0α1e
j(θ1−θ0) + α2

1s0

s̃1 = α2
1s1 + s0α0α1e

j(θ0−θ1) − s0α0α1e
j(θ0−θ1) + α2

0s1

The middle terms cancel out in each case, so finally,

s̃0 = (α2
0 + α2

1)s0

s̃1 = (α2
1 + α2

0)s1

In short, in two symbol periods, we’ve managed to convey two symbols of information. Each symbol
arrives with approximately the same signal amplitude that we would have had in the maximal ratio
combining case.

Notes:
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1. This is a two-by one code, that is, it works for two transmit antennas and one receive antenna.
This code has been generalized for n×mMIMO systems, and called “space-time block codes”,
by Tarokh et. al. [25]. These can send more symbols in less time – in k symbol periods, you
can send more than k symbols.

2. If you transmit out of two antennas, you would in general need twice as much power as the
receiver diversity case, which had one transmit antenna. So generally we compare the two
when using the same total transmit power, i.e., cut the power in half in the transmitter
diversity case. The performance is thus 3 dB worse than the receiver MRC diversity case.

3. The Alamouti and space-time block codes are not optimal. Space-time coding is the name
of the general area of encoding information the multiple channels. One better-performing
scheme is called space-time trellis coding. But the decoding complexity of space-time trellis
codes increases exponentially as a function of the spectral efficiency [14, p377] [25].

30.3 MIMO Channel Representation

In general for MIMO, we have multiple (Nt) transmitters and multiple (Nr) receivers. We refer
to the system as a (Nt, Nr) or Nt × Nr MIMO system. Figure 37(c) shows the channels for a
(2, 2) MIMO system. For the channel between transmitter k and receiver i, we denote the “channel
voltage gain” as hi,k. This gain is a complex number, with real and imaginary parts. Recall that
the phase of a multipath component changes with distance, frequency, due to reflections, etc. The
channel power gain would be |hi,k|2. The received voltage signal at i, just from transmitter k, is
skhi,k, where sk is what was transmitted from antenna k.

To keep all these numbers organized, we use vectors and matrices. The transmitted signal from
antennas 1, . . . , Nt is s,

s = [s1, . . . , sNt ]
T

and the channel gain matrix H is given as

H =








h1,1 h2,1 · · · hNt,1

h1,2 h2,2 · · · hNt,2
...

...
. . .

...
h1,Nr h2,Nr · · · hNt,Nr








(51)

Where there are Nr rows each corresponding to the channels measured at each receiver; and Nt

columns each corresponding to the channels from each transmitter.
The received signal at receiver i is a linear combination of the sk for k = 1, . . . , Nt terms plus

noise:

xi =

Nt∑

k=1

hi,ksk + wi

where wi the additive noise term, and i = 1, . . . , Nr. In matrix form, we can rewrite this as:

x = Hs+w

where x = [x1, . . . , xNr ]
T is the received vector and w = [w1, . . . , wNr ]

T is the noise vector.
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30.4 Capacity of MIMO Systems

Earlier we described the Shannon-Hartley theoretical limit to the bps per Hz we can achieve on a
channel. Using multiple antennas at the TX and RX increases this theoretical limit. We said that
the limit on bandwidth efficiency is given as,

Rmax

B
= log2 (1 + ρ) (52)

where Rmax is the maximum possible bit rate which can be achieved on the channel for given signal
to noise ratio ρ and bandwidth B.

In a Nt × Nr MIMO system with channel matrix H as given in (51), with Nt ≥ Nr, the new
Shannon limit on bps per Hz is [14],

Rmax

B
= E

[

log2

{

det

(

INr + ρ
1

Nt
HH†

)}]

(53)

where H† is the complex conjugate of H (I’m copying the notation of the Haykin Moher book),
and ρ is the average signal to noise ratio. Here, we assume that each channel is Rayleigh, that
is each channel voltage gain hi,k is complex Gaussian, and all channel gains are independent from
each other. This is why we need an expected value – the matrix H is filled with random variables.

To get more intuition about the bandwidth efficiency limit, consider that the term HH† is
a Hermitian Nr × Nr matrix with eigendecomposition HH† = UΛU † where U is the matrix of
eigenvectors of HH† and Λ is a diagonal matrix of eigenvalues λi for i = 1, . . . , Nr. In this case,
we can rewrite (53) as,

Rmax

B
= E

[
Nr∑

i=1

log2

(

1 + ρ
λi

Nt

)]

(54)

Compared to (52), Equation (54) is a sum of several Shannon capacities – each with effective SNR
ρ λi
Nt

. Recall this was the formula for Nt ≥ Nr. For Nr ≥ Nt, the formula is

Rmax

B
=

Nt∑

i=1

E

[

log2

(

1 + ρ
λi

Nr

)]

(55)

These min(Nt, Nr) “channels” are called the “eigen-mode channels” of a MIMO system.
In summary, we have created min(Nt, Nr) eigen-mode channels. Results have shown that the to-

tal capacity increases approximately with min(Nt, Nr). MIMO is so attractive for current and future
communication systems because it multiplies the achievable bit rate by this factor of min(Nt, Nr),
without requiring additional bandwidth or signal energy.
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